Glove Labelling Model (SAM2 fine-tuned)
This repository contains a fine-tuned SAM2 hierarchical image segmentation model adapted for high-precision baseball glove segmentation.
π‘ What it does
Given a frame from a pitching video, this model outputs per-pixel segmentations for:
glove_outline
webbing
thumb
palm_pocket
hand
glove_exterior
Trained on individual pitch frame sequences using COCO format masks.
π Architecture
- Base Model:
SAM2Hierarchical
- Framework: PyTorch
- Input shape:
[1, 3, 720, 1280]
RGB frame - Output: Segmentation logits across 6 glove-related classes
π§ Usage
To use the model for inference:
import torch
from PIL import Image
import torchvision.transforms as T
model = torch.load("pytorch_model.bin", map_location="cpu")
model.eval()
transform = T.Compose([
T.Resize((720, 1280)),
T.ToTensor()
])
img = Image.open("example.jpg").convert("RGB")
x = transform(img).unsqueeze(0)
with torch.no_grad():
output = model(x)
# Convert logits to class labels
pred_mask = output.argmax(dim=1).squeeze().cpu().numpy()
- Downloads last month
- 25
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
π
Ask for provider support