Glove Labelling Model (SAM2 fine-tuned)

This repository contains a fine-tuned SAM2 hierarchical image segmentation model adapted for high-precision baseball glove segmentation.

πŸ’‘ What it does

Given a frame from a pitching video, this model outputs per-pixel segmentations for:

  • glove_outline
  • webbing
  • thumb
  • palm_pocket
  • hand
  • glove_exterior

Trained on individual pitch frame sequences using COCO format masks.


πŸ— Architecture

  • Base Model: SAM2Hierarchical
  • Framework: PyTorch
  • Input shape: [1, 3, 720, 1280] RGB frame
  • Output: Segmentation logits across 6 glove-related classes

πŸ”§ Usage

To use the model for inference:

import torch
from PIL import Image
import torchvision.transforms as T

model = torch.load("pytorch_model.bin", map_location="cpu")
model.eval()

transform = T.Compose([
    T.Resize((720, 1280)),
    T.ToTensor()
])

img = Image.open("example.jpg").convert("RGB")
x = transform(img).unsqueeze(0)

with torch.no_grad():
    output = model(x)

# Convert logits to class labels
pred_mask = output.argmax(dim=1).squeeze().cpu().numpy()
Downloads last month
25
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support