gr00t-wholettheducksout

This is a GR00T (Generalist Robot 00 Technology) model trained using NVIDIA's GR00T training framework.

Model Details

  • Model Type: GR00T Embodied AI Model
  • Training Job: wholettheducksout_1to1_matched
  • Training Steps: 200,000
  • Training Duration: ~23.5 hours
  • Data Configuration: so100_dualcam
  • Base Model: nvidia/GR00T-N1.5-3B

Training Configuration

{
  "action_dim": 32,
  "action_head_cfg": {
    "action_dim": 32,
    "action_horizon": 16,
    "add_pos_embed": true,
    "backbone_embedding_dim": 2048,
    "diffusion_model_cfg": {
      "attention_head_dim": 48,
      "cross_attention_dim": 2048,
      "dropout": 0.2,
      "final_dropout": true,
      "interleave_self_attention": true,
      "norm_type": "ada_norm",
      "num_attention_heads": 32,
      "num_layers": 16,
      "output_dim": 1024,
      "positional_embeddings": null
    },
    "hidden_size": 1024,
    "input_embedding_dim": 1536,
    "max_action_dim": 32,
    "max_state_dim": 64,
    "model_dtype": "float32",
    "noise_beta_alpha": 1.5,
    "noise_beta_beta": 1.0,
    "noise_s": 0.999,
    "num_inference_timesteps": 4,
    "num_target_vision_tokens": 32,
    "num_timestep_buckets": 1000,
    "tune_diffusion_model": true,
    "tune_projector": true,
    "use_vlln": true,
    "vl_self_attention_cfg": {
      "attention_head_dim": 64,
      "dropout": 0.2,
      "final_dropout": true,
      "num_attention_heads": 32,
      "num_layers": 4,
      "positional_embeddings": null
    }
  },
  "action_horizon": 16,
  "architectures": [
    "GR00T_N1_5"
  ],
  "attn_implementation": null,
  "backbone_cfg": {
    "eagle_path": "NVEagle/eagle_er-qwen3_1_7B-Siglip2_400M_stage1_5_128gpu_er_v7_1mlp_nops",
    "load_bf16": false,
    "project_to_dim": null,
    "reproject_vision": false,
    "select_layer": 12,
    "tune_llm": false,
    "tune_visual": true,
    "use_flash_attention": true
  },
  "compute_dtype": "bfloat16",
  "hidden_size": 2048,
  "model_dtype": "float32",
  "model_type": "gr00t_n1_5",
  "torch_dtype": "bfloat16",
  "transformers_version": "4.51.3"
}

Usage

This model can be used with the GR00T inference framework:

# Example usage (adjust based on your specific setup)
from gr00t_inference import GR00TInference

model = GR00TInference(
    model_path="path/to/this/model",
    embodiment_tag="new_embodiment",
    data_config="so100"
)

# Use for inference
results = model.infer(your_input_data)

Training Metadata

{ "new_embodiment": { "statistics": { "state": { "single_arm": { "max": [ 72.46653747558594, 62.818336486816406, 99.72752380371094, 99.39103698730469, -46.26399230957031 ], "min": [ -86.99808502197266, -99.32088470458984, -97.72933959960938, -87.64680480957031, -65.0611801147461 ], "mean": [ -7.457055568695068, -25.479028701782227, 32.967071533203125, 35.0267333984375, -55.26940155029297 ], "std": [ 20.533525466918945, 50.98550033569336, 50.28582763671875, 45.0773811340332, 2.7385220527648926 ], "q01": [ -75.78075408935547, -99.1511001586914, -95.18619537353516, -62.41844177246094, -61.2080192565918 ], "q99": [ 33.20586395263672, 55.67232688903806, 99.54586791992188, 99.30404663085938, -48.86748123168945 ] }, "gripper": { "max": [ 49.49358367919922 ], "min": [ 1.3504388332366943 ], "mean": [ 11.123491287231445 ], "std": [ 10.017578125 ], "q01": [ 1.3504388332366943 ], "q99": [ 40.64821243286133 ] } }, "action": { "single_arm": { "max": [ 73.06226348876953, 62.077701568603516, 99.81908416748047, 100.0, -46.0078010559082 ], "min": [ -87.29351806640625, -100.0, -99.81908416748047, -91.41742706298828, -65.25357818603516 ], "mean": [ -7.188200950622559, -26.144899368286133, 31.129091262817383, 34.6439094543457, -55.28120803833008 ], "std": [ 20.539134979248047, 50.40521240234375, 50.696495056152344, 45.221248626708984, 2.745452642440796 ], "q01": [ -75.47649383544922, -99.49324035644531, -96.72727142333984, -62.808841705322266, -61.508453369140625 ], "q99": [ 33.67217254638672, 54.47635269165039, 99.63817596435547, 99.56653594970703, -48.920677185058594 ] }, "gripper": { "max": [ 49.88161087036133 ], "min": [ 0.23677979409694672 ], "mean": [ 9.19546890258789 ], "std": [ 10.420595169067383 ], "q01": [ 1.262825608253479 ], "q99": [ 40.64719772338867 ] } } }, "modalities": { "video": { "front": { "resolution": [ 640, 480 ], "channels": 3, "fps": 30.0 }, "wrist": { "resolution": [ 640, 480 ], "channels": 3, "fps": 30.0 } }, "state": { "single_arm": { "absolute": true, "rotation_type": null, "shape": [ 5 ], "continuous": true }, "gripper": { "absolute": true, "rotation_type": null, "shape": [ 1 ], "continuous": true } }, "action": { "single_arm": { "absolute": true, "rotation_type": null, "shape": [ 5 ], "continuous": true }, "gripper": { "absolute": true, "rotation_type": null, "shape": [ 1 ], "continuous": true } } }, "embodiment_tag": "new_embodiment" } }

Files

  • config.json: Model configuration
  • model-*.safetensors: Model weights in SafeTensors format
  • model.safetensors.index.json: Model sharding index
  • experiment_cfg/metadata.json: Training experiment metadata

License

This model is released under the MIT license.

Downloads last month
7
Safetensors
Model size
2.72B params
Tensor type
F32
·
BF16
·
Video Preview
loading