he-cantillation

This model is a fine-tuned version of ivrit-ai/whisper-large-v3-turbo on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4220
  • Wer: 35.5610
  • Avg Precision Exact: 0.4895
  • Avg Recall Exact: 0.5009
  • Avg F1 Exact: 0.4943
  • Avg Precision Letter Shift: 0.5105
  • Avg Recall Letter Shift: 0.5234
  • Avg F1 Letter Shift: 0.5157
  • Avg Precision Word Level: 0.5228
  • Avg Recall Word Level: 0.5364
  • Avg F1 Word Level: 0.5279
  • Avg Precision Word Shift: 0.6946
  • Avg Recall Word Shift: 0.7228
  • Avg F1 Word Shift: 0.7055
  • Precision Median Exact: 0.4524
  • Recall Median Exact: 0.4833
  • F1 Median Exact: 0.4706
  • Precision Max Exact: 1.0
  • Recall Max Exact: 1.0
  • F1 Max Exact: 1.0
  • Precision Min Exact: 0.0
  • Recall Min Exact: 0.0
  • F1 Min Exact: 0.0
  • Precision Min Letter Shift: 0.0
  • Recall Min Letter Shift: 0.0
  • F1 Min Letter Shift: 0.0
  • Precision Min Word Level: 0.0
  • Recall Min Word Level: 0.0
  • F1 Min Word Level: 0.0
  • Precision Min Word Shift: 0.0
  • Recall Min Word Shift: 0.0
  • F1 Min Word Shift: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 60000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Avg Precision Exact Avg Recall Exact Avg F1 Exact Avg Precision Letter Shift Avg Recall Letter Shift Avg F1 Letter Shift Avg Precision Word Level Avg Recall Word Level Avg F1 Word Level Avg Precision Word Shift Avg Recall Word Shift Avg F1 Word Shift Precision Median Exact Recall Median Exact F1 Median Exact Precision Max Exact Recall Max Exact F1 Max Exact Precision Min Exact Recall Min Exact F1 Min Exact Precision Min Letter Shift Recall Min Letter Shift F1 Min Letter Shift Precision Min Word Level Recall Min Word Level F1 Min Word Level Precision Min Word Shift Recall Min Word Shift F1 Min Word Shift
No log 0.0001 1 7.2503 108.6320 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.1342 0.2962 2500 0.6879 55.3095 0.3378 0.3531 0.3445 0.3736 0.3930 0.3815 0.3902 0.4089 0.3972 0.5839 0.6279 0.6015 0.1935 0.2174 0.2021 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0737 0.5925 5000 0.6062 50.9023 0.3793 0.3990 0.3878 0.4084 0.4316 0.4184 0.4244 0.4481 0.4344 0.6099 0.6620 0.6313 0.25 0.2772 0.2647 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0637 0.8887 7500 0.5195 47.3558 0.3950 0.4133 0.4024 0.4216 0.4437 0.4298 0.4354 0.4590 0.4441 0.6160 0.6641 0.6339 0.2581 0.2917 0.2692 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0499 1.1850 10000 0.5286 46.2515 0.4063 0.4231 0.4125 0.4327 0.4530 0.4401 0.4477 0.4708 0.4561 0.6263 0.6728 0.6433 0.2667 0.3 0.2817 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0468 1.4812 12500 0.5122 46.7592 0.4081 0.4204 0.4130 0.4345 0.4489 0.4401 0.4476 0.4627 0.4534 0.6198 0.6532 0.6324 0.2571 0.2806 0.2667 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.053 1.7775 15000 0.4899 45.7365 0.4067 0.4211 0.4119 0.4348 0.4524 0.4408 0.4490 0.4689 0.4556 0.6308 0.6698 0.6455 0.2727 0.2934 0.2778 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0357 2.0737 17500 0.4765 44.8087 0.4227 0.4343 0.4277 0.4494 0.4636 0.4554 0.4654 0.4795 0.4709 0.6496 0.6805 0.6614 0.2857 0.3095 0.2934 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0452 2.3699 20000 0.4817 43.5380 0.4225 0.4342 0.4263 0.4483 0.4632 0.4533 0.4617 0.4777 0.4666 0.6398 0.6742 0.6514 0.2642 0.2857 0.2689 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0384 2.6662 22500 0.4465 42.9034 0.4410 0.4517 0.4450 0.4656 0.4779 0.4700 0.4783 0.4919 0.4829 0.6630 0.6879 0.6717 0.3134 0.3333 0.32 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0171 2.9624 25000 0.4247 39.2373 0.4574 0.4690 0.4619 0.4819 0.4952 0.4868 0.4948 0.5104 0.5006 0.6782 0.7077 0.6892 0.3433 0.3703 0.3504 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0142 3.2587 27500 0.4705 43.7539 0.4300 0.4472 0.4361 0.4545 0.4748 0.4613 0.4665 0.4887 0.4739 0.6422 0.6844 0.6568 0.3103 0.3333 0.3220 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0163 3.5549 30000 0.4480 41.7772 0.4505 0.4613 0.4548 0.4759 0.4873 0.4798 0.4900 0.5018 0.4937 0.6693 0.6940 0.6777 0.3455 0.375 0.3523 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0081 3.8512 32500 0.4588 40.7224 0.4470 0.4565 0.4506 0.4701 0.4810 0.4741 0.4829 0.4946 0.4872 0.6673 0.6950 0.6775 0.3333 0.35 0.3418 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0156 4.1474 35000 0.4382 38.0863 0.4597 0.4695 0.4639 0.4835 0.4956 0.4882 0.4964 0.5099 0.5012 0.6763 0.7053 0.6873 0.3563 0.3846 0.3704 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0146 4.4437 37500 0.4453 39.8763 0.4662 0.4771 0.4704 0.4896 0.5038 0.4946 0.5019 0.5173 0.5072 0.6714 0.7033 0.6826 0.3690 0.4118 0.3795 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0075 4.7399 40000 0.4473 37.8747 0.4659 0.4760 0.4700 0.4880 0.5008 0.4930 0.5004 0.5147 0.5059 0.6739 0.7035 0.6852 0.3732 0.4064 0.3867 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0054 5.0361 42500 0.4328 37.4954 0.4664 0.4775 0.4711 0.4898 0.5035 0.4952 0.5020 0.5167 0.5074 0.6801 0.7111 0.6920 0.3611 0.3934 0.3743 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0019 5.3324 45000 0.4505 38.5108 0.4614 0.4718 0.4656 0.4856 0.4984 0.4907 0.4985 0.5121 0.5037 0.6791 0.7063 0.6895 0.3606 0.3901 0.3709 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0089 5.6286 47500 0.4472 38.6348 0.4593 0.4684 0.4628 0.4828 0.4941 0.4871 0.4949 0.5074 0.4995 0.6734 0.7023 0.6841 0.3438 0.3624 0.3530 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0171 5.9249 50000 0.4119 36.0337 0.4815 0.4914 0.4854 0.5048 0.5163 0.5092 0.5169 0.5291 0.5214 0.6935 0.7229 0.7049 0.4286 0.4535 0.4407 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0025 6.2211 52500 0.4380 36.5982 0.4804 0.4927 0.4853 0.5030 0.5172 0.5086 0.5136 0.5294 0.5197 0.6862 0.7181 0.6985 0.4068 0.4367 0.4205 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0062 6.5174 55000 0.4319 37.3904 0.4784 0.4895 0.4832 0.5006 0.5141 0.5063 0.5129 0.5269 0.5185 0.6844 0.7136 0.6958 0.4142 0.4390 0.4255 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0085 6.8136 57500 0.4211 36.6566 0.4856 0.4969 0.4903 0.5068 0.5195 0.5118 0.5188 0.5329 0.5239 0.6872 0.7160 0.6977 0.4353 0.4721 0.4552 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0048 7.1098 60000 0.4220 35.5610 0.4895 0.5009 0.4943 0.5105 0.5234 0.5157 0.5228 0.5364 0.5279 0.6946 0.7228 0.7055 0.4524 0.4833 0.4706 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu126
  • Datasets 2.12.0
  • Tokenizers 0.20.1
Downloads last month
14
Safetensors
Model size
809M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for cantillation/Teamim-IvritAI-large-v3-turbo_WeightDecay-0.005_Augmented_WithSRT_date-15-04-2025

Finetuned
(4)
this model