Triton Kernel Code Generation Model
This model is a fine-tuned version of Qwen/Qwen2.5-1.5B-Instruct specialized for generating Triton GPU kernels.
Model Details
- Base Model: Qwen/Qwen2.5-1.5B-Instruct
- Fine-tuned on: 6000 examples of Triton kernel code
- Eval Loss: 0.20
- Eval Perplexity: 1.22
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("cdreetz/kwen2.5-1.5b")
tokenizer = AutoTokenizer.from_pretrained("cdreetz/kwen2.5-1.5b")
prompt = "Write a Triton kernel for element-wise addition:"
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=512)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
Training Details
- Epochs: 2
- Batch Size: 2
- Learning Rate: 1e-5
- Dataset Size: 6000 examples
Performance
The model generates syntactically correct Triton kernels with proper:
@triton.jit
decorators- Kernel function signatures
- Launch function implementations
- Memory access patterns
- Grid configurations
Limitations
- Specialized for Triton kernel generation only
- May require prompt engineering for optimal results
- Generated kernels should be tested before production use
- Downloads last month
- 160
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support