File size: 13,684 Bytes
c1484df
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcb616dad40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcb616dadd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcb616dae60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcb616daef0>", "_build": "<function ActorCriticPolicy._build at 0x7fcb616daf80>", "forward": "<function ActorCriticPolicy.forward at 0x7fcb616db010>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcb616db0a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcb616db130>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcb616db1c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcb616db250>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcb616db2e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcb616db370>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fcb616dd800>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685812550426451416, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKWQwL7A7Mo+eD3TPQ5Ewb5MZwi+GsvHPQAAAAAAAAAABlINPvYzXD3zK42+XrsXvg1kIb3udzu9AAAAAAAAAABAzmU+P5SFP/BInT4m5Ra/f+0XPpVcfDwAAAAAAAAAAHOXUL4Dgc8+Zme9vR7wm76T86q93W4wvAAAAAAAAAAAM9LnvFhnoD/Wg+i9vhgOv2dmmb240Xs9AAAAAAAAAAANZaw9FFzquriJKz1T89C9IcO4PL7Ynr4AAAAAAAAAAAZYNL40oJw+zMjAPHZeZb7NsoK959ZCuwAAAAAAAAAArQItvk64pryw0GK7V9kHustTET6IJ+E6AACAPwAAgD8g64w+QsuTPzpe7D67VRq/CHc4PrWw3z0AAAAAAAAAAE27MT47hI+8pVTSugU5KzlSzAK+CBQOOgAAgD8AAIA/s8tlPcCRnT/Kqm4+Vi8dv6ccFD01asU9AAAAAAAAAACaKfE7jV+rP3odnD1nG+G+pwX5ODywKbwAAAAAAAAAAFNRLD6OXKG8+80uOc3WmbcQXg++tVV0uAAAgD8AAIA/WnlpPnxYmj4Ftbu9mxmPvmOqKD0+2a68AAAAAAAAAAAgJyw+iMiNvHKdPrvqHJI5mdT2vYZWgToAAIA/AACAP3YnT77jPBE9XcDrvMny7L0ykKC9mn2IvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVCgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG0+fms/6fuMAWyUS+qMAXSUR0CgoHcHObAldX2UKGgGR0Bxc9RwZOzqaAdL/2gIR0Cg06tsnAqNdX2UKGgGR0BjtEkB0ZFYaAdN6ANoCEdAoNU7ye7L+3V9lChoBkdAZmVIxQBPsWgHTegDaAhHQKDVVxiobXJ1fZQoaAZHQHESG5lOGj9oB0vHaAhHQKDVe/wiJO51fZQoaAZHQG1lRVAAyVRoB0vfaAhHQKDV/hUipvR1fZQoaAZHQHBEC5Etuk1oB00PAWgIR0Cg1iyckMTfdX2UKGgGR0BwjCeSSvC/aAdNbQFoCEdAoNcpoh6jWXV9lChoBkdAZLOz7di2D2gHTegDaAhHQKDXKVYZEUl1fZQoaAZHQGLDnrIHTqloB03oA2gIR0Cg2GIcinpCdX2UKGgGR0ByiZ3IMjNZaAdNBAFoCEdAoNiifYjB23V9lChoBkdAb4doB7u2JGgHS+toCEdAoNqOitaIN3V9lChoBkdAcKQwxnFo+WgHS+loCEdAoNqb41xbS3V9lChoBkdAbaBE1l5GBmgHS9BoCEdAoNquLxZuAXV9lChoBkdAcZ1zHjp9qmgHTTcBaAhHQKDa/avA44p1fZQoaAZHQHH4G0AtFrloB0vwaAhHQKDbjvm5lOJ1fZQoaAZHQHC1LLQokRloB0vKaAhHQKDbrKnvUjN1fZQoaAZHQF1WBInSfDloB03oA2gIR0Cg3FUxM36zdX2UKGgGR0BxPNTER8MNaAdNPgFoCEdAoNyWtp22X3V9lChoBkdAcJb8Yht+C2gHTQwBaAhHQKDdD7qIJqt1fZQoaAZHQG2sn/tICltoB0vyaAhHQKDd6M5wOvt1fZQoaAZHQHHqzZL7GedoB00CAWgIR0Cg3f/Xf642dX2UKGgGR0BgIFxbSqlxaAdN6ANoCEdAoN5hqEeyRnV9lChoBkdAcE35y2hIv2gHS+VoCEdAoN9flnyup3V9lChoBkdAcEvkC3gDR2gHS+1oCEdAoN9xp+MIeHV9lChoBkdAceipJwsGxGgHS9NoCEdAoN/N/Ue+23V9lChoBkdAcSctYSxqwmgHS/doCEdAoOCd3W4EwHV9lChoBkdAXa/8HfMwDmgHTegDaAhHQKDg+TyJ9Ap1fZQoaAZHQHMbYP5HmRxoB0v5aAhHQKDhRk3juKJ1fZQoaAZHQHANQEdNnGtoB0vqaAhHQKDhqeGwiaB1fZQoaAZHQHIbCiRGMGZoB00PAWgIR0Cg4el8G9pRdX2UKGgGR0BwbZcRlHz6aAdL8mgIR0Cg4xqEnLJTdX2UKGgGR0BvRAQarFOxaAdL6GgIR0Cg42uhCdBjdX2UKGgGR0BxryyPdVNpaAdNFgFoCEdAoOQEJng5znV9lChoBkdAYIrJ4B3iaWgHTegDaAhHQKDkXIxQBPt1fZQoaAZHQG+7WW6bvw5oB0vbaAhHQKDkc54nndR1fZQoaAZHQG4cYDs+mnBoB0vqaAhHQKDk79GZuyh1fZQoaAZHQGY6yX2M85loB03oA2gIR0Cg5oCVbA1vdX2UKGgGR0BxB5Mi8nNQaAdNFwFoCEdAoObg+Y+jd3V9lChoBkdAcfFh/RVp9WgHS/doCEdAoOcpgy/KyXV9lChoBkdAcIUorFwT/WgHS/BoCEdAoOdvTPSlWXV9lChoBkdAcU0SOinHemgHS+toCEdAoOfBg9eQdXV9lChoBkdAZGDdC3PRiWgHTegDaAhHQKDnz6mfoRt1fZQoaAZHQG7WKs+3YthoB0vyaAhHQKDo6DFqBVd1fZQoaAZHQHFrAjD8+A5oB00OAWgIR0Cg6VDqW1MNdX2UKGgGR0BxJqjj7yhBaAdL92gIR0Cg6jveHi3odX2UKGgGR0BwQphfBvaUaAdL1GgIR0Cg6n8er+5wdX2UKGgGR0BytOoWHk92aAdNGgFoCEdAoOs1S619fHV9lChoBkdAcZcOVxCIDmgHTQYBaAhHQKDrjufEn9h1fZQoaAZHQHIhBpUPxx1oB00hAWgIR0Cg68qLKmsOdX2UKGgGR0BxqG06YE4eaAdL02gIR0Cg7CyYoiLVdX2UKGgGR0BxrNXjlxOtaAdLzGgIR0Cg7GZDqnm8dX2UKGgGR0BxkLehwl0HaAdNIgFoCEdAoOx9ymygPHV9lChoBkdAb976D5CWvGgHS9loCEdAoOx8Mw1zhnV9lChoBkdAcGsKmbb1y2gHS/NoCEdAoOyWFDfFaXV9lChoBkdAcWlWNWEK3WgHS/VoCEdAoO1g4S6DoXV9lChoBkdAcGdDLr5ZbWgHS/toCEdAoO2Fd7fHgnV9lChoBkdAbLZiVB2OhmgHS9RoCEdAoO2JOvdM03V9lChoBkdAcrNYHgP3BmgHS+NoCEdAoO4FGsmv4nV9lChoBkdAcqSt9x6v7mgHTSYBaAhHQKDwJIhhYvF1fZQoaAZHQHEu6o2n889oB0v6aAhHQKDwWFev6j51fZQoaAZHQHCmc/UvwmVoB0vvaAhHQKDwXW4mTkh1fZQoaAZHQHI6F36hxo9oB0veaAhHQKDwaJ4SpR51fZQoaAZHQG+UdXLeQ+5oB0vXaAhHQKDwlY287IV1fZQoaAZHQHEj9yYG+sZoB0vdaAhHQKDws6d1+y91fZQoaAZHQGDnef7JnxtoB03oA2gIR0Cg8Rmj9GZvdX2UKGgGR0Bx9TMC9ytFaAdNNgFoCEdAoPE25UcXFnV9lChoBkdAYHy14xDb8GgHTegDaAhHQKDxYUPhAGB1fZQoaAZHQHDd90vGp/BoB00MAWgIR0Cg8aasIVuadX2UKGgGR0Bys/NTtLL7aAdL7mgIR0Cg8dYqgAZLdX2UKGgGR0BuGfu3MINWaAdL6GgIR0Cg8eBtcfNidX2UKGgGR0Byeoy57PY4aAdNLAFoCEdAoPH5AMUh3nV9lChoBkdAcu5UmD15B2gHS+5oCEdAoPJRkoWpInV9lChoBkdAcWYSrYGt62gHS+doCEdAoPPmLzf78HV9lChoBkdAboPP+n62v2gHS+FoCEdAoPPzCrLhaXV9lChoBkdAcovVuJk5ImgHTYMBaAhHQKD0MTYdyT91fZQoaAZHQHCQ331zySVoB0vnaAhHQKD0WOT7l7t1fZQoaAZHQHAfXV5KODJoB0vyaAhHQKD0cCmuTzN1fZQoaAZHQG6eoSlFc6hoB0vbaAhHQKD0fQj2SMd1fZQoaAZHQG6R8stkFwFoB0v5aAhHQKD1EtVaOgh1fZQoaAZHQHJvR82Jiy9oB0v0aAhHQKD1pcfNiYt1fZQoaAZHQG8iy1E3KjloB00WAWgIR0Cg9bzbeuV5dX2UKGgGR0BwodaouPFOaAdNAwFoCEdAoPaO2JBPbnV9lChoBkdAcMt1Muez2WgHTToBaAhHQKD2o9K28Zl1fZQoaAZHQG3iUxubZvloB0vkaAhHQKD39AcDKYB1fZQoaAZHQHGxHdXT3IxoB0vfaAhHQKD4Ih24d6t1fZQoaAZHQG+Gs+/xlQNoB0vgaAhHQKD4fpsXSBt1fZQoaAZHQG8JMWweNkxoB0vtaAhHQKD4lJf6XSl1fZQoaAZHQHAL/5HmRvFoB0v7aAhHQKD5yLfk3jx1fZQoaAZHQGyAIPTXrdFoB01SAWgIR0Cg+iI371qWdX2UKGgGR0BzH8LZzxPPaAdNOgFoCEdAoPpHHaN+9nV9lChoBkdAbCzS6UaAF2gHTQgCaAhHQKD7GsnRb8p1fZQoaAZHQG/2uIInjQ1oB00hAWgIR0Cg+3Eb5uZUdX2UKGgGR0BwOCovSMLnaAdL/mgIR0Cg+9DgIhQndX2UKGgGR0Bwe/OAy2x6aAdNCgFoCEdAoPv43vQWvnV9lChoBkdAZZj0HyEtd2gHTegDaAhHQKD82uJUHY91fZQoaAZHQHFN+IhyKeloB0v0aAhHQKD9Ch4+r2h1fZQoaAZHQG74r5IpYtBoB0vuaAhHQKD9dOW0JF91fZQoaAZHQHEEkfozN2VoB00IAWgIR0Cg/Z0P6KtQdX2UKGgGR0BxPvodMj/uaAdL/GgIR0Cg/dXC0ngHdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}