See axolotl config
axolotl version: 0.8.1
base_model: huihui-ai/Llama-3.3-70B-Instruct-abliterated-finetuned
load_in_8bit: false
load_in_4bit: true
adapter: qlora
wandb_name: 70B_outputs_axolotl_ft
output_dir: ./outputs/out/70B_outputs_axolotl_ft
hub_model_id: cgifbribcgfbi/Llama-3.3-70B-Instruct-abliterated-finetuned-chemistry-70B-outputs
hub_strategy: every_save
# resume_from_checkpoint: ./outputs/out/5_70B_axolotl_ft/checkpoint-72
tokenizer_type: AutoTokenizer
push_dataset_to_hub:
strict: false
datasets:
- path: dset_70B_outputs_1982.jsonl
type: chat_template
split: train
dataset_prepared_path: last_run_prepared
val_set_size: 0.04
# test_datasets:
# - path: 5000_benign_val.json
# type: chat_template
# split: train
save_safetensors: true
sequence_len: 3000
sample_packing: true
pad_to_sequence_len: true
lora_r: 64
lora_alpha: 32
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
wandb_mode:
wandb_project: finetune-chem
wandb_entity: gpoisjgqetpadsfke
wandb_watch:
wandb_run_id:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 4
num_epochs: 2
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 0.00002
train_on_inputs: false
group_by_length: true
bf16: true
tf32: true
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: true
logging_steps: 1
flash_attention: true
warmup_steps: 10
evals_per_epoch: 3
saves_per_epoch: 1
weight_decay: 0.01
fsdp:
- full_shard
- auto_wrap
fsdp_config:
fsdp_limit_all_gathers: true
fsdp_sync_module_states: true
fsdp_offload_params: false
fsdp_use_orig_params: false
fsdp_cpu_ram_efficient_loading: true
fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
fsdp_state_dict_type: FULL_STATE_DICT
fsdp_sharding_strategy: FULL_SHARD
special_tokens:
pad_token: <|finetune_right_pad_id|>
Llama-3.3-70B-Instruct-abliterated-finetuned-chemistry-70B-outputs
This model is a fine-tuned version of huihui-ai/Llama-3.3-70B-Instruct-abliterated-finetuned on the dset_70B_outputs_1982.jsonl dataset. It achieves the following results on the evaluation set:
- Loss: 0.2786
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 16
- total_eval_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 2.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
0.311 | 0.0238 | 1 | 0.3211 |
0.3017 | 0.3333 | 14 | 0.3027 |
0.2771 | 0.6667 | 28 | 0.2875 |
0.3 | 1.0 | 42 | 0.2819 |
0.2919 | 1.3333 | 56 | 0.2795 |
0.2632 | 1.6667 | 70 | 0.2786 |
0.2907 | 2.0 | 84 | 0.2786 |
Framework versions
- PEFT 0.15.1
- Transformers 4.51.0
- Pytorch 2.5.1+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
- Downloads last month
- 2,136
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for cgifbribcgfbi/Llama-3.3-70B-Instruct-abliterated-finetuned-chemistry-70B-outputs
Base model
meta-llama/Llama-3.1-70B
Finetuned
meta-llama/Llama-3.3-70B-Instruct