cgifbribcgfbi's picture
Model save
b1eb44e verified
metadata
library_name: peft
license: llama3.3
base_model: huihui-ai/Llama-3.3-70B-Instruct-abliterated-finetuned
tags:
  - axolotl
  - generated_from_trainer
datasets:
  - mixed_ochem_3205_1659.jsonl
model-index:
  - name: Llama-3.3-70B-Instruct-abliterated-finetuned-chemistry-ccs-mixed-4e
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.9.0

base_model: huihui-ai/Llama-3.3-70B-Instruct-abliterated-finetuned
load_in_8bit: false
load_in_4bit: true
adapter: qlora
wandb_name: mixed_ccs_chem_4e_axolotl_ft
output_dir: ./outputs/out/mixed_ccs_chem_4e_axolotl_ft
hub_model_id: cgifbribcgfbi/Llama-3.3-70B-Instruct-abliterated-finetuned-chemistry-ccs-mixed-4e
hub_strategy: every_save
# resume_from_checkpoint: ./outputs/out/diverse_ccs_chem_axolotl_ft/checkpoint-106

tokenizer_type: AutoTokenizer
push_dataset_to_hub:
strict: false

datasets:
  - path: mixed_ochem_3205_1659.jsonl 
    type: chat_template
    split: train

dataset_prepared_path: last_run_prepared
val_set_size: 0.05
save_safetensors: true

sequence_len: 2700
sample_packing: true
pad_to_sequence_len: true

lora_r: 64
lora_alpha: 32
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true

wandb_mode:
wandb_project: finetune-chem
wandb_entity: gpoisjgqetpadsfke
wandb_watch:
wandb_run_id:
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 4
num_epochs: 4
optimizer: adamw_torch_fused
lr_scheduler: cosine
learning_rate: 0.00002

train_on_inputs: false
group_by_length: true
bf16: true
tf32: true

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: true
logging_steps: 1
flash_attention: true

warmup_steps: 10
evals_per_epoch: 3
saves_per_epoch: 1
weight_decay: 0.01
fsdp:
  - full_shard
  - auto_wrap
fsdp_config:
  fsdp_limit_all_gathers: true
  fsdp_sync_module_states: true
  fsdp_offload_params: false
  fsdp_use_orig_params: false
  fsdp_cpu_ram_efficient_loading: true
  fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
  fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
  fsdp_state_dict_type: FULL_STATE_DICT
  fsdp_sharding_strategy: FULL_SHARD
special_tokens:
  pad_token: <|finetune_right_pad_id|>

Llama-3.3-70B-Instruct-abliterated-finetuned-chemistry-ccs-mixed-4e

This model is a fine-tuned version of huihui-ai/Llama-3.3-70B-Instruct-abliterated-finetuned on the mixed_ochem_3205_1659.jsonl dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6081

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 16
  • total_eval_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 4.0

Training results

Training Loss Epoch Step Validation Loss
1.0974 0.0056 1 1.1005
0.7968 0.3352 60 0.7873
0.6989 0.6704 120 0.7054
0.6387 1.0056 180 0.6682
0.638 1.3408 240 0.6471
0.6402 1.6760 300 0.6324
0.5645 2.0112 360 0.6224
0.5758 2.3464 420 0.6170
0.5876 2.6816 480 0.6120
0.5607 3.0168 540 0.6089
0.5325 3.3520 600 0.6087
0.5528 3.6872 660 0.6081

Framework versions

  • PEFT 0.15.2
  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1