|
--- |
|
license: llama2 |
|
library_name: peft |
|
tags: |
|
- llama-factory |
|
- lora |
|
- trl |
|
- dpo |
|
- generated_from_trainer |
|
base_model: lmsys/vicuna-7b-v1.5 |
|
model-index: |
|
- name: Vicuna-7B-v1.5-ORPO-SALT |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Vicuna-7B-v1.5-ORPO-SALT |
|
|
|
This model is a fine-tuned version of [lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) on the dpo_mix_en and the bct_non_cot_dpo_1000 datasets. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.9497 |
|
- Rewards/chosen: -0.0879 |
|
- Rewards/rejected: -0.0995 |
|
- Rewards/accuracies: 0.5164 |
|
- Rewards/margins: 0.0116 |
|
- Logps/rejected: -0.9948 |
|
- Logps/chosen: -0.8787 |
|
- Logits/rejected: -0.3581 |
|
- Logits/chosen: -0.3775 |
|
- Sft Loss: 0.8787 |
|
- Odds Ratio Loss: 0.7104 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-06 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 0.1 |
|
- num_epochs: 3.0 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Sft Loss | Odds Ratio Loss | |
|
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:|:---------------:| |
|
| 1.0008 | 0.8082 | 500 | 0.9777 | -0.0907 | -0.1019 | 0.5055 | 0.0113 | -1.0193 | -0.9066 | -0.3689 | -0.3878 | 0.9066 | 0.7105 | |
|
| 0.8458 | 1.6165 | 1000 | 0.9560 | -0.0885 | -0.1000 | 0.5191 | 0.0115 | -1.0000 | -0.8850 | -0.3578 | -0.3772 | 0.8850 | 0.7097 | |
|
| 0.9219 | 2.4247 | 1500 | 0.9497 | -0.0879 | -0.0995 | 0.5164 | 0.0116 | -0.9948 | -0.8787 | -0.3581 | -0.3775 | 0.8787 | 0.7104 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.10.0 |
|
- Transformers 4.40.1 |
|
- Pytorch 2.3.0 |
|
- Datasets 2.19.0 |
|
- Tokenizers 0.19.1 |