CHICKADEE 28M - Multi-Drone Detection & Tracking System

๐ŸŒ Developed by Deep Autonomy - Advanced AI solutions for autonomous systems

Latest Update: Enhanced with 200K iteration training achieving 81.30% mAP performance

Overview

CHICKADEE 28M is a production-ready computer vision system for real-time multi-drone detection and tracking. Built on Detectron2 with a ResNet-18 backbone, the system provides robust object detection with advanced ByteTrack multi-object tracking capabilities and enterprise-grade reliability.

Model Specifications

Architecture

  • Framework: Detectron2 (PyTorch)
  • Base Model: Faster R-CNN
  • Backbone: ResNet-18 with Feature Pyramid Network (FPN)
  • Input Resolution: 1920x1080 (Full HD)
  • Model Size: 216 MB (.pth format)
  • Parameters: 28,269,781 total (28.1M trainable)

Performance Metrics (COCO Evaluation)

  • Average Precision (AP): 81.30%
  • AP50: 97.00%
  • AP75: 92.80%
  • AP Small: 77.93%
  • AP Medium: 90.29%
  • AP Large: 40.88%

Training Configuration

  • Training Iterations: 200,000 (Extended training)
  • Dataset: Synthetic drone dataset (143K images)
  • Batch Size: 8
  • Learning Rate: 0.0004 with decay steps at 140K, 180K
  • Optimizer: SGD with momentum
  • Data Augmentation: Random flip, resize shortest edge
  • Warmup: 8,000 iterations

Detection Performance

  • Confidence Threshold: 0.02 (configurable)
  • NMS Threshold: 0.05 (aggressive suppression)
  • RPN NMS Threshold: 0.1
  • Maximum Detections: 1000 per image

Tracking Performance

  • Tracking Algorithm: ByteTrack (simplified implementation)
  • Track Threshold: 0.3
  • Track Buffer: 30 frames
  • Match Threshold: 0.7 (IoU-based association)
  • Minimum Box Area: 10 pixels

Production Features

  • Real Confidence Scores: Native PyTorch precision
  • Enterprise Reliability: Battle-tested Detectron2 backend
  • Professional Visualization: Detectron2 + custom track overlays
  • Robust Tracking: Advanced ByteTrack implementation
  • CPU/GPU Support: Automatic device detection
  • Configurable Parameters: Flexible deployment options

System Requirements

Hardware

  • CPU: Multi-core processor (Intel i5 or equivalent)
  • RAM: 8GB minimum, 16GB recommended
  • GPU: Optional (CUDA-compatible for acceleration)
  • Storage: 500MB free space

Software Dependencies

  • Python 3.8+
  • PyTorch 1.9+
  • Detectron2
  • OpenCV 4.5+
  • NumPy
  • SciPy

File Structure

chickadee-28m/
โ”œโ”€โ”€ README.md                           # This documentation
โ”œโ”€โ”€ model_final.pth                     # Trained ResNet-18 model (216 MB)
โ”œโ”€โ”€ config.json                         # Model configuration (enables download tracking)
โ”œโ”€โ”€ model_index.json                    # Model metadata and file index
โ””โ”€โ”€ requirements.txt                    # Python dependencies

Usage

Model Loading

import torch
from detectron2.config import get_cfg
from detectron2.modeling import build_model
from detectron2.checkpoint import DetectionCheckpointer
from detectron2 import model_zoo

# Load the model
cfg = get_cfg()
cfg.merge_from_file(model_zoo.get_config_file("COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml"))
cfg.MODEL.BACKBONE.NAME = "build_resnet_fpn_backbone"
cfg.MODEL.RESNETS.DEPTH = 18
cfg.MODEL.RESNETS.RES2_OUT_CHANNELS = 64
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 1
cfg.MODEL.WEIGHTS = "./model_final.pth"

model = build_model(cfg)
checkpointer = DetectionCheckpointer(model)
checkpointer.load(cfg.MODEL.WEIGHTS)
model.eval()

Basic Inference

import cv2
from detectron2.utils.visualizer import Visualizer
from detectron2.data import MetadataCatalog

# Load and process image/video frame
image = cv2.imread("input_image.jpg")
with torch.no_grad():
    predictions = model([{"image": torch.as_tensor(image.astype("float32").transpose(2, 0, 1))}])

# Visualize results
v = Visualizer(image[:, :, ::-1], MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1.0)
out = v.draw_instance_predictions(predictions[0]["instances"].to("cpu"))
result = out.get_image()[:, :, ::-1]

Configuration Options

Detection Parameters

  • confidence_threshold: Minimum detection confidence (default: 0.02)
  • nms_threshold: Non-maximum suppression threshold (default: 0.05)
  • max_detections: Maximum detections per frame (default: 1000)

Tracking Parameters

  • track_thresh: High-confidence track threshold (default: 0.3)
  • track_buffer: Frame buffer for lost tracks (default: 30)
  • match_thresh: IoU threshold for track association (default: 0.7)
  • min_box_area: Minimum bounding box area (default: 10)

Output Format

Detection Results

Each detection includes:

  • Bounding box coordinates (x1, y1, x2, y2)
  • Confidence score (0.0 - 1.0)
  • Class prediction (drone)

Tracking Results

Each track provides:

  • Unique track ID
  • Bounding box coordinates
  • Confidence score
  • Track state (active/lost/removed)
  • Velocity estimation

Performance Benchmarks

Processing Statistics (Example Video)

  • Input: 1920x1080, 417 frames, 23 FPS
  • Total Detections: 11,188 (0.01 confidence)
  • Average Detections/Frame: 28.25
  • Detection Rate: 100% (detections in every frame)
  • Average Active Tracks/Frame: 39.12
  • Maximum Simultaneous Tracks: 99
  • Processing Speed: 0.4 FPS (CPU) / 12.3 FPS (GPU RTX 3080)

Accuracy Metrics

  • Classification Accuracy: 97.56%
  • False Negative Rate: 6.30%
  • Foreground Classification Accuracy: 93.70%

Technical Features

Advanced Detection

  • Multi-scale feature extraction via FPN
  • Aggressive non-maximum suppression for dense scenes
  • Configurable confidence thresholds
  • Robust bounding box filtering (size, aspect ratio)

Multi-Object Tracking

  • Hungarian algorithm for optimal track-detection association
  • Kalman filter-based motion prediction
  • Track state management (new, tracked, lost, removed)
  • Re-identification of temporarily lost tracks
  • Velocity-based motion compensation

Visualization

  • Professional bounding box rendering
  • Consistent track ID coloring
  • Real-time confidence score display
  • Detectron2-compatible visualization pipeline

Model Validation

Training Convergence (200K Iterations)

  • Improved Performance: +5.51% AP improvement over 50K training
  • Extended Training: 4x longer training for better convergence
  • Learning Rate Schedule: Decay at 140K and 180K iterations
  • Stable Convergence: Excellent performance on validation set

Evaluation Protocol

  • COCO-style evaluation metrics
  • IoU thresholds: 0.5, 0.75, 0.5:0.95
  • Size categories: Small (<32ยฒ), Medium (32ยฒ-96ยฒ), Large (>96ยฒ)

Deployment Considerations

Production Deployment

  • PyTorch backend ensures consistent confidence scores
  • CPU-compatible for broad hardware support
  • Configurable parameters for different scenarios
  • Model can be integrated into custom applications

Integration Notes

  • Model expects RGB images in Detectron2 format
  • Outputs standard COCO-format predictions
  • Compatible with Detectron2 visualization tools

Performance Optimization

  • GPU acceleration available with CUDA
  • Batch processing for multiple images/videos
  • Configurable detection thresholds for speed/accuracy trade-offs
  • Memory-efficient inference

Limitations

Current Constraints

  • Optimized for drone-like objects (small, aerial vehicles)
  • Performance degrades with very large objects (AP Large: 23.47%)
  • CPU-only processing limits real-time performance
  • Requires Detectron2 framework for inference

Recommended Use Cases

  • Surveillance and monitoring applications
  • Multi-drone analysis
  • Aerial vehicle counting and tracking
  • Security and defense applications

Support and Maintenance

Model Updates

  • Retrain with domain-specific data for improved accuracy
  • Adjust NMS thresholds for different object densities
  • Fine-tune tracking parameters for specific scenarios

Troubleshooting

  • Ensure all dependencies are correctly installed
  • Verify model file integrity (215.4 MB expected size)
  • Check input video format compatibility
  • Monitor memory usage for large videos

Version History

Version 1.0 (Updated)

  • ResNet-18 backbone for improved efficiency
  • 200K iteration training (4x extended)
  • 81.30% mAP performance (+5.51% improvement)
  • Enhanced ByteTrack implementation with sticky tracking
  • Real confidence score integration
  • GPU acceleration support (12.3 FPS on RTX 3080)
  • Production-ready visualization with metrics display
  • 28M parameter architecture
  • Comprehensive documentation

About Deep Autonomy

CHICKADEE 28M is developed by Deep Autonomy, a leading provider of advanced AI solutions for autonomous systems. We specialize in computer vision, multi-object tracking, and real-time detection systems for defense, surveillance, and autonomous vehicle applications.

๐ŸŒ Visit us: deepautonomy.ai
๐Ÿ“ง Contact: For enterprise solutions and custom AI development
๐Ÿš€ Expertise: Computer Vision โ€ข Object Detection โ€ข Multi-Object Tracking โ€ข Real-time AI Systems

Download Metrics

This model includes download tracking via Hugging Face's metrics system:

  • Primary Query File: config.json (enables download counting)
  • Model Query File: model_final.pth (tracks model downloads)
  • Tracking Method: Server-side HTTP request counting (no user data collected)

CHICKADEE 28M - Professional Multi-Drone Detection & Tracking System
Developed for production deployment with enterprise-grade reliability and performance.

Downloads last month
2
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support