SentenceTransformer based on Qwen/Qwen3-0.6B
This is a sentence-transformers model finetuned from Qwen/Qwen3-0.6B. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: Qwen/Qwen3-0.6B
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: Qwen3Model
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'what county is neptune city nj',
'Neptune City, NJ. Neptune City is a borough in Monmouth County, New Jersey, United States. As of the 2010 United States Census, the borough population was 4,869. The Borough of Neptune City was incorporated on October 4, 1881, based on a referendum held on March 19, 1881.',
'Neptune City, NJ. Sponsored Topics. Neptune City is a borough in Monmouth County, New Jersey, United States. As of the 2010 United States Census, the borough population was 4,869. The Borough of Neptune City was incorporated on October 4, 1881, based on a referendum held on March 19, 1881.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 17,048,032 training samples
- Columns:
sentence_0
,sentence_1
, andsentence_2
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 sentence_2 type string string string details - min: 2 tokens
- mean: 7.16 tokens
- max: 33 tokens
- min: 25 tokens
- mean: 84.34 tokens
- max: 243 tokens
- min: 16 tokens
- mean: 81.56 tokens
- max: 300 tokens
- Samples:
sentence_0 sentence_1 sentence_2 what county is nettles island fl
Nettles Island. Nettles Island in Hutchinson Island Florida. A development of close to 1300 lots with anything from trailer pads to updated concrete block homes on a mostly man made island that juts out into the Indian River on Hutchinson Island in Saint Lucie County FL. Though, the official address for Nettles Island is in Jensen Beach.
Fleming Island is an unincorporated community and census-designated place in Clay County, Florida, United States. It is located 21 miles southwest of downtown Jacksonville, on the western side of the St. Johns River, off US 17. As of the 2010 census the Fleming Island CDP had a population of 27,126. Fleming Island's ZIP code became 32003 in 2004, giving it a different code from Orange Park, the incorporated town to the north.
what time of day to take estrogen
Time of day to take Estrogen. Hi. I think we all may find different times of day are better for each of our needs. I actually feel much better using my estrogen twice a day. I use half in the morning and half in the evening. I am using a different estrogen than you and am able to split my dose. I'm glad to hear that you have been feeling very good on your current hormone therapy Hopefully just a small adjustment may be needed as our estrogen needs can change overtime.
Eating fresh carrots or drinking a cup of fresh carrot juice 2-3 times a day is a wonderful way to bring on your period sooner than expected. Carrots contain high amounts of carotene, which encourages the production of estrogen. The more estrogen you have in your body, the more your period desires to arrive.
what effects does nicotine have on your body
Nicotine also activates areas of the brain that are involved in producing feelings of pleasure and reward. Recently, scientists discovered that nicotine raises the levels of a neurotransmitter called dopamine in the parts of the brain that produce feelings of pleasure and reward.
The action of nicotine in the body is very complicated. It is a mild stimulant which has an effect upon the heart and brain. It stimulates the central nervous system causing irregular heartbeat and blood pressure, induces vomiting and diarrhea, and first stimulates, then inhibits glandular secretions.icotine seems to provide both a stimulant and a depressant effect, and it is likely that the effect it has at any time is determined by the mood of the user, the environment and the circumstances of use.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
num_train_epochs
: 1max_steps
: 10000fp16
: Truemulti_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 1max_steps
: 10000lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.0002 | 500 | 1.7342 |
0.0005 | 1000 | 1.7194 |
0.0007 | 1500 | 1.6713 |
0.0009 | 2000 | 1.5885 |
0.0012 | 2500 | 1.4152 |
0.0014 | 3000 | 1.3052 |
0.0016 | 3500 | 1.1763 |
0.0019 | 4000 | 1.0714 |
0.0021 | 4500 | 1.0235 |
0.0023 | 5000 | 0.9484 |
0.0026 | 5500 | 0.9207 |
0.0028 | 6000 | 0.9076 |
0.0031 | 6500 | 0.8736 |
0.0033 | 7000 | 0.8671 |
0.0035 | 7500 | 0.8621 |
0.0038 | 8000 | 0.8414 |
0.0040 | 8500 | 0.8228 |
0.0042 | 9000 | 0.8101 |
0.0045 | 9500 | 0.8339 |
0.0047 | 10000 | 0.7968 |
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 4.0.1
- Transformers: 4.51.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.6.0
- Datasets: 3.2.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 121
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support