banner

Overview

This model was fine-tuned from ModernBERT-base on the GoEmotions dataset for multi-label classification. It predicts emotional states in text, with a total of 28 possible labels. Each input text can have one or more associated labels, reflecting the multi-label nature of the task.

Try it out here.


Model Details

  • Base Model: ModernBERT-base
  • Fine-Tuning Dataset: GoEmotions
  • Number of Labels: 28
  • Problem Type: Multi-label classification
  • Language: English
  • License: MIT
  • Fine-Tuning Framework: Hugging Face Transformers

Example Usage

Here’s how to use the model with Hugging Face Transformers:

from transformers import pipeline
import torch

# Load the model
classifier = pipeline(
    "text-classification", 
    model="cirimus/modernbert-base-go-emotions",
    return_all_scores=True
)

text = "I am so happy and excited about this opportunity!"
predictions = classifier(text)

# Print top 5 detected emotions
sorted_preds = sorted(predictions[0], key=lambda x: x['score'], reverse=True)
top_5 = sorted_preds[:5]

print("\nTop 5 emotions detected:")
for pred in top_5:
    print(f"{pred['label']}: {pred['score']:.3f}")

# Example output:
# Top 5 emotions detected:
# excitement: 0.937
# joy: 0.915
# desire: 0.022
# love: 0.020
# admiration: 0.017

How the Model Was Created

The model was fine-tuned for 3 epochs using the following hyperparameters:

  • Learning Rate: 2e-5
  • Batch Size: 16
  • Weight Decay: 0.01
  • Warmup Steps: 500
  • Optimizer: AdamW
  • Evaluation Metrics: Precision, Recall, F1 Score (weighted), Accuracy

Dataset

The GoEmotions dataset is a multi-label emotion classification dataset derived from Reddit comments. It contains 58,000 examples with 28 emotion labels (e.g., admiration, amusement, anger, etc.), and it is annotated for multi-label classification.


Evaluation Results

The model was evaluated on the test split of the GoEmotions dataset, using a threshold of 0.5 for binarizing predictions. The overall metrics were:

Standard Results:

Using the default threshold of 0.5.

Macro Averages (test)

  • Accuracy: 0.970
  • Precision: 0.665
  • Recall: 0.389
  • F1: 0.465
  • MCC: 0.477

Per-Label Results (test)

Label Accuracy Precision Recall F1 MCC Support Threshold
admiration 0.945 0.737 0.627 0.677 0.650 504 0.5
amusement 0.980 0.794 0.803 0.798 0.788 264 0.5
anger 0.968 0.680 0.258 0.374 0.406 198 0.5
annoyance 0.940 0.468 0.159 0.238 0.249 320 0.5
approval 0.942 0.614 0.276 0.381 0.387 351 0.5
caring 0.976 0.524 0.244 0.333 0.347 135 0.5
confusion 0.975 0.625 0.294 0.400 0.418 153 0.5
curiosity 0.951 0.538 0.423 0.473 0.452 284 0.5
desire 0.987 0.604 0.349 0.443 0.453 83 0.5
disappointment 0.974 0.656 0.139 0.230 0.294 151 0.5
disapproval 0.950 0.494 0.292 0.367 0.356 267 0.5
disgust 0.980 0.674 0.252 0.367 0.405 123 0.5
embarrassment 0.995 0.857 0.324 0.471 0.526 37 0.5
excitement 0.984 0.692 0.262 0.380 0.420 103 0.5
fear 0.992 0.796 0.551 0.652 0.659 78 0.5
gratitude 0.990 0.957 0.892 0.924 0.919 352 0.5
grief 0.999 0.000 0.000 0.000 0.000 6 0.5
joy 0.978 0.652 0.571 0.609 0.600 161 0.5
love 0.982 0.792 0.798 0.795 0.786 238 0.5
nervousness 0.996 0.636 0.304 0.412 0.439 23 0.5
optimism 0.975 0.743 0.403 0.523 0.536 186 0.5
pride 0.998 0.857 0.375 0.522 0.566 16 0.5
realization 0.973 0.514 0.124 0.200 0.244 145 0.5
relief 0.998 1.000 0.091 0.167 0.301 11 0.5
remorse 0.992 0.594 0.732 0.656 0.656 56 0.5
sadness 0.979 0.759 0.385 0.511 0.532 156 0.5
surprise 0.978 0.649 0.340 0.447 0.460 141 0.5
neutral 0.794 0.715 0.623 0.666 0.520 1787 0.5

Optimal Results:

Using the best threshold for each label based on the training set (tuned on F1).

Macro Averages (test)

  • Accuracy: 0.967
  • Precision: 0.568
  • Recall: 0.531
  • F1: 0.541
  • MCC: 0.526

Per-Label Results (test)

Label Accuracy Precision Recall F1 MCC Support Threshold
admiration 0.946 0.700 0.726 0.713 0.683 504 0.30
amusement 0.981 0.782 0.856 0.817 0.808 264 0.40
anger 0.963 0.490 0.510 0.500 0.481 198 0.20
annoyance 0.917 0.337 0.425 0.376 0.334 320 0.25
approval 0.922 0.411 0.473 0.440 0.399 351 0.25
caring 0.971 0.424 0.415 0.419 0.405 135 0.25
confusion 0.970 0.468 0.484 0.476 0.460 153 0.30
curiosity 0.947 0.493 0.630 0.553 0.530 284 0.35
desire 0.988 0.708 0.410 0.519 0.533 83 0.45
disappointment 0.963 0.321 0.291 0.306 0.287 151 0.25
disapproval 0.943 0.429 0.464 0.446 0.417 267 0.30
disgust 0.981 0.604 0.496 0.545 0.538 123 0.20
embarrassment 0.995 0.789 0.405 0.536 0.564 37 0.30
excitement 0.979 0.444 0.388 0.415 0.405 103 0.25
fear 0.991 0.693 0.667 0.680 0.675 78 0.30
gratitude 0.990 0.951 0.886 0.918 0.913 352 0.50
grief 0.999 0.500 0.500 0.500 0.499 6 0.20
joy 0.978 0.628 0.609 0.618 0.607 161 0.40
love 0.982 0.789 0.819 0.804 0.795 238 0.45
nervousness 0.995 0.375 0.391 0.383 0.380 23 0.25
optimism 0.970 0.558 0.597 0.577 0.561 186 0.15
pride 0.998 0.750 0.375 0.500 0.529 16 0.15
realization 0.968 0.326 0.200 0.248 0.240 145 0.25
relief 0.998 0.429 0.273 0.333 0.341 11 0.25
remorse 0.993 0.611 0.786 0.688 0.689 56 0.55
sadness 0.979 0.667 0.538 0.596 0.589 156 0.20
surprise 0.978 0.585 0.511 0.545 0.535 141 0.30
neutral 0.782 0.649 0.737 0.690 0.526 1787 0.40

Intended Use

The model is designed for emotion classification in English-language text, particularly in domains such as:

  • Social media sentiment analysis
  • Customer feedback evaluation
  • Behavioral or psychological research

Limitations and Biases

  • Data Bias: The dataset is based on Reddit comments, which may not generalize well to other domains or cultural contexts.
  • Underrepresented Classes: Certain labels like "grief" and "relief" have very few examples, leading to lower performance for those classes.
  • Ambiguity: Some training data contain annotation inconsistencies or ambiguities that may impact predictions.


Environmental Impact

  • Hardware Used: NVIDIA RTX4090
  • Training Time: <1 hour
  • Carbon Emissions: ~0.04 kg CO2 (calculated via ML CO2 Impact Calculator).

Citation

If you use this model, please cite it as follows:

@inproceedings{JdFE2025b,
  title = {Emotion Classification with ModernBERT},
  author = {Enric Junqu\'e de Fortuny},
  year = {2025},
  howpublished = {\url{https://huggingface.co/cirimus/modernbert-base-go-emotions}},
}
Downloads last month
109
Safetensors
Model size
150M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for cirimus/modernbert-base-go-emotions

Finetuned
(180)
this model

Dataset used to train cirimus/modernbert-base-go-emotions

Space using cirimus/modernbert-base-go-emotions 1