Overview
This model was fine-tuned from ModernBERT-large on the GoEmotions dataset for multi-label classification. It predicts emotional states in text, with a total of 28 possible labels. Each input text can have one or more associated labels, reflecting the multi-label nature of the task.
Try it out here.
Model Details
- Base Model: ModernBERT-large
- Fine-Tuning Dataset: GoEmotions
- Number of Labels: 28
- Problem Type: Multi-label classification
- Language: English
- License: MIT
- Fine-Tuning Framework: Hugging Face Transformers
Example Usage
Here’s how to use the model with Hugging Face Transformers:
from transformers import pipeline
import torch
# Load the model
classifier = pipeline(
"text-classification",
model="cirimus/modernbert-large-go-emotions",
return_all_scores=True
)
text = "I am so happy and excited about this opportunity!"
predictions = classifier(text)
# Print top 5 detected emotions
sorted_preds = sorted(predictions[0], key=lambda x: x['score'], reverse=True)
top_5 = sorted_preds[:5]
print("\nTop 5 emotions detected:")
for pred in top_5:
print(f"{pred['label']}: {pred['score']:.3f}")
# Example output:
# Top 5 emotions detected:
# joy: 0.784
# excitement: 0.735
# admiration: 0.013
# gratitude: 0.003
# amusement: 0.003
How the Model Was Created
The model was fine-tuned for 3 epochs using the following hyperparameters:
- Learning Rate:
2e-5
- Batch Size: 16
- Weight Decay:
0.01
- Optimizer: AdamW
- Evaluation Metrics: Precision, Recall, F1 Score (weighted), Accuracy
Dataset
The GoEmotions dataset is a multi-label emotion classification dataset derived from Reddit comments. It contains 58,000 examples with 28 emotion labels (e.g., admiration, amusement, anger, etc.), and it is annotated for multi-label classification.
Evaluation Results
The model was evaluated on the test split of the GoEmotions dataset, using a threshold of 0.5
for binarizing predictions. The overall metrics were:
Standard Results:
Using the default threshold of 0.5.
Macro Averages (test)
- Accuracy:
0.971
- Precision:
0.611
- Recall:
0.410
- F1:
0.472
- MCC:
0.475
Per-Label Results (test)
Label | Accuracy | Precision | Recall | F1 | MCC | Support | Threshold |
---|---|---|---|---|---|---|---|
admiration | 0.946 | 0.739 | 0.653 | 0.693 | 0.666 | 504 | 0.5 |
amusement | 0.982 | 0.817 | 0.814 | 0.816 | 0.807 | 264 | 0.5 |
anger | 0.968 | 0.671 | 0.237 | 0.351 | 0.387 | 198 | 0.5 |
annoyance | 0.938 | 0.449 | 0.191 | 0.268 | 0.265 | 320 | 0.5 |
approval | 0.940 | 0.564 | 0.302 | 0.393 | 0.384 | 351 | 0.5 |
caring | 0.977 | 0.581 | 0.319 | 0.411 | 0.420 | 135 | 0.5 |
confusion | 0.973 | 0.553 | 0.307 | 0.395 | 0.400 | 153 | 0.5 |
curiosity | 0.952 | 0.551 | 0.454 | 0.498 | 0.476 | 284 | 0.5 |
desire | 0.988 | 0.702 | 0.398 | 0.508 | 0.523 | 83 | 0.5 |
disappointment | 0.972 | 0.500 | 0.152 | 0.234 | 0.265 | 151 | 0.5 |
disapproval | 0.951 | 0.503 | 0.315 | 0.387 | 0.374 | 267 | 0.5 |
disgust | 0.981 | 0.685 | 0.301 | 0.418 | 0.446 | 123 | 0.5 |
embarrassment | 0.995 | 0.800 | 0.324 | 0.462 | 0.507 | 37 | 0.5 |
excitement | 0.983 | 0.649 | 0.233 | 0.343 | 0.382 | 103 | 0.5 |
fear | 0.991 | 0.738 | 0.577 | 0.647 | 0.648 | 78 | 0.5 |
gratitude | 0.990 | 0.955 | 0.895 | 0.924 | 0.919 | 352 | 0.5 |
grief | 0.999 | 0.000 | 0.000 | 0.000 | 0.000 | 6 | 0.5 |
joy | 0.980 | 0.658 | 0.646 | 0.652 | 0.642 | 161 | 0.5 |
love | 0.983 | 0.795 | 0.815 | 0.805 | 0.796 | 238 | 0.5 |
nervousness | 0.996 | 0.556 | 0.435 | 0.488 | 0.490 | 23 | 0.5 |
optimism | 0.973 | 0.702 | 0.392 | 0.503 | 0.513 | 186 | 0.5 |
pride | 0.998 | 0.800 | 0.250 | 0.381 | 0.446 | 16 | 0.5 |
realization | 0.972 | 0.405 | 0.117 | 0.182 | 0.207 | 145 | 0.5 |
relief | 0.998 | 0.000 | 0.000 | 0.000 | 0.000 | 11 | 0.5 |
remorse | 0.992 | 0.566 | 0.839 | 0.676 | 0.686 | 56 | 0.5 |
sadness | 0.980 | 0.764 | 0.436 | 0.555 | 0.568 | 156 | 0.5 |
surprise | 0.980 | 0.692 | 0.447 | 0.543 | 0.547 | 141 | 0.5 |
neutral | 0.796 | 0.716 | 0.628 | 0.669 | 0.525 | 1787 | 0.5 |
Optimal Results:
Using the best threshold for each label based on the training set (tuned on F1).
Macro Averages (test)
- Accuracy:
0.968
- Precision:
0.591
- Recall:
0.528
- F1:
0.550
- MCC:
0.536
Per-Label Results (test)
Label | Accuracy | Precision | Recall | F1 | MCC | Support | Threshold |
---|---|---|---|---|---|---|---|
admiration | 0.947 | 0.722 | 0.702 | 0.712 | 0.683 | 504 | 0.40 |
amusement | 0.983 | 0.812 | 0.848 | 0.830 | 0.821 | 264 | 0.45 |
anger | 0.966 | 0.548 | 0.460 | 0.500 | 0.485 | 198 | 0.25 |
annoyance | 0.926 | 0.378 | 0.403 | 0.390 | 0.351 | 320 | 0.30 |
approval | 0.928 | 0.445 | 0.470 | 0.457 | 0.419 | 351 | 0.30 |
caring | 0.975 | 0.496 | 0.430 | 0.460 | 0.449 | 135 | 0.35 |
confusion | 0.966 | 0.417 | 0.510 | 0.459 | 0.444 | 153 | 0.30 |
curiosity | 0.950 | 0.522 | 0.588 | 0.553 | 0.528 | 284 | 0.40 |
desire | 0.988 | 0.673 | 0.422 | 0.519 | 0.527 | 83 | 0.40 |
disappointment | 0.964 | 0.338 | 0.305 | 0.321 | 0.303 | 151 | 0.30 |
disapproval | 0.948 | 0.468 | 0.416 | 0.440 | 0.414 | 267 | 0.35 |
disgust | 0.978 | 0.529 | 0.447 | 0.485 | 0.475 | 123 | 0.25 |
embarrassment | 0.994 | 0.650 | 0.351 | 0.456 | 0.475 | 37 | 0.35 |
excitement | 0.978 | 0.419 | 0.427 | 0.423 | 0.412 | 103 | 0.25 |
fear | 0.990 | 0.662 | 0.628 | 0.645 | 0.640 | 78 | 0.40 |
gratitude | 0.990 | 0.955 | 0.895 | 0.924 | 0.919 | 352 | 0.50 |
grief | 0.999 | 0.750 | 0.500 | 0.600 | 0.612 | 6 | 0.35 |
joy | 0.980 | 0.660 | 0.640 | 0.650 | 0.639 | 161 | 0.50 |
love | 0.982 | 0.774 | 0.836 | 0.804 | 0.795 | 238 | 0.45 |
nervousness | 0.995 | 0.435 | 0.435 | 0.435 | 0.432 | 23 | 0.45 |
optimism | 0.972 | 0.597 | 0.565 | 0.580 | 0.566 | 186 | 0.25 |
pride | 0.998 | 0.667 | 0.375 | 0.480 | 0.499 | 16 | 0.15 |
realization | 0.962 | 0.273 | 0.248 | 0.260 | 0.241 | 145 | 0.25 |
relief | 0.999 | 0.800 | 0.364 | 0.500 | 0.539 | 11 | 0.25 |
remorse | 0.993 | 0.641 | 0.732 | 0.683 | 0.681 | 56 | 0.65 |
sadness | 0.978 | 0.646 | 0.538 | 0.587 | 0.579 | 156 | 0.30 |
surprise | 0.979 | 0.603 | 0.518 | 0.557 | 0.548 | 141 | 0.40 |
neutral | 0.791 | 0.669 | 0.722 | 0.695 | 0.537 | 1787 | 0.40 |
Intended Use
The model is designed for emotion classification in English-language text, particularly in domains such as:
- Social media sentiment analysis
- Customer feedback evaluation
- Behavioral or psychological research
Limitations and Biases
- Data Bias: The dataset is based on Reddit comments, which may not generalize well to other domains or cultural contexts.
- Underrepresented Classes: Certain labels like "grief" and "relief" have very few examples, leading to lower performance for those classes.
- Ambiguity: Some training data contain annotation inconsistencies or ambiguities that may impact predictions.
Environmental Impact
- Hardware Used: NVIDIA RTX4090
- Training Time: <1 hour
- Carbon Emissions: ~0.06 kg CO2 (calculated via ML CO2 Impact Calculator).
Citation
If you use this model, please cite it as follows:
@inproceedings{JdFE2025c,
title = {Emotion Classification with ModernBERT},
author = {Enric Junqu\'e de Fortuny},
year = {2025},
howpublished = {\url{https://huggingface.co/cirimus/modernbert-large-go-emotions}},
}
- Downloads last month
- 52
Model tree for cirimus/modernbert-large-go-emotions
Base model
answerdotai/ModernBERT-large