Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,239 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
library_name: transformers
|
3 |
-
tags: []
|
4 |
---
|
5 |
|
6 |
-
# Model Card for Model ID
|
7 |
|
8 |
-
|
9 |
|
|
|
10 |
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
### Model Description
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
|
125 |
-
|
126 |
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
-
|
130 |
|
131 |
-
|
132 |
|
|
|
133 |
|
|
|
|
|
|
|
134 |
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
-
|
|
|
138 |
|
139 |
-
|
|
|
|
|
140 |
|
141 |
-
|
|
|
|
|
142 |
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
|
153 |
-
|
154 |
|
155 |
-
|
156 |
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
-
|
160 |
|
161 |
-
|
162 |
|
163 |
-
|
164 |
|
165 |
-
|
166 |
|
167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
|
169 |
-
[More Information Needed]
|
170 |
|
171 |
-
|
172 |
|
173 |
-
|
174 |
|
175 |
-
|
176 |
|
177 |
-
|
|
|
|
|
178 |
|
179 |
-
|
180 |
|
181 |
-
|
182 |
|
183 |
-
|
|
|
|
|
184 |
|
185 |
-
|
186 |
|
187 |
-
|
188 |
|
189 |
-
|
190 |
|
191 |
-
|
|
|
|
|
192 |
|
193 |
-
|
194 |
|
195 |
-
|
196 |
|
197 |
-
|
198 |
|
199 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language: en
|
3 |
+
tags:
|
4 |
+
- text-classification
|
5 |
+
- pytorch
|
6 |
+
- ModernBERT
|
7 |
+
- emotions
|
8 |
+
- multi-class-classification
|
9 |
+
- multi-label-classification
|
10 |
+
datasets:
|
11 |
+
- go_emotions
|
12 |
+
license: mit
|
13 |
+
metrics:
|
14 |
+
- accuracy
|
15 |
+
- f1
|
16 |
+
- precision
|
17 |
+
- recall
|
18 |
+
- matthews_correlation
|
19 |
+
base_model:
|
20 |
+
- answerdotai/ModernBERT-base
|
21 |
+
widget:
|
22 |
+
- text: I am thrilled to be a part of this amazing journey!
|
23 |
+
- text: I feel so disappointed with the results.
|
24 |
+
- text: This is a neutral statement about cake.
|
25 |
library_name: transformers
|
|
|
26 |
---
|
27 |
|
|
|
28 |
|
29 |
+
# Model Card for YourModelName
|
30 |
|
31 |
+
### Overview
|
32 |
|
33 |
+
This model was fine-tuned from [ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the [GoEmotions](https://huggingface.co/datasets/google-research-datasets/go_emotions) dataset for multi-label classification. It predicts emotional states in text, with a total of 28 possible labels. Each input text can have one or more associated labels, reflecting the multi-label nature of the task.
|
34 |
|
35 |
+
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
### Model Details
|
38 |
|
39 |
+
- **Base Model**: [ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base)
|
40 |
+
- **Fine-Tuning Dataset**: [GoEmotions](https://huggingface.co/datasets/go_emotions)
|
41 |
+
- **Number of Labels**: 28
|
42 |
+
- **Problem Type**: Multi-label classification
|
43 |
+
- **Language**: English
|
44 |
+
- **License**: [MIT](https://opensource.org/licenses/MIT)
|
45 |
+
- **Fine-Tuning Framework**: Hugging Face Transformers
|
46 |
|
47 |
+
---
|
48 |
|
49 |
+
### Example Usage
|
50 |
|
51 |
+
Here’s how to use the model with Hugging Face Transformers:
|
52 |
|
53 |
+
```python
|
54 |
+
from transformers import pipeline
|
55 |
+
import torch
|
56 |
|
57 |
+
# Load the model
|
58 |
+
classifier = pipeline(
|
59 |
+
"text-classification",
|
60 |
+
model="cirimus/modernbert-base-go-emotions",
|
61 |
+
return_all_scores=True
|
62 |
+
)
|
63 |
|
64 |
+
text = "I am so happy and excited about this opportunity!"
|
65 |
+
predictions = classifier(text)
|
66 |
|
67 |
+
# Print top 5 detected emotions
|
68 |
+
sorted_preds = sorted(predictions[0], key=lambda x: x['score'], reverse=True)
|
69 |
+
top_5 = sorted_preds[:5]
|
70 |
|
71 |
+
print("\nTop 5 emotions detected:")
|
72 |
+
for pred in top_5:
|
73 |
+
print(f"{pred['label']}: {pred['score']:.3f}")
|
74 |
|
75 |
+
# Example output:
|
76 |
+
# Top 5 emotions detected:
|
77 |
+
# excitement: 0.937
|
78 |
+
# joy: 0.915
|
79 |
+
# desire: 0.022
|
80 |
+
# love: 0.020
|
81 |
+
# admiration: 0.017
|
82 |
+
```
|
83 |
|
|
|
84 |
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
### How the Model Was Created
|
87 |
|
88 |
+
The model was fine-tuned for 3 epochs using the following hyperparameters:
|
89 |
|
90 |
+
- **Learning Rate**: `2e-5`
|
91 |
+
- **Batch Size**: 16
|
92 |
+
- **Weight Decay**: `0.01`
|
93 |
+
- **Warmup Steps**: 500
|
94 |
+
- **Optimizer**: AdamW
|
95 |
+
- **Evaluation Metrics**: Precision, Recall, F1 Score (weighted), Accuracy
|
96 |
|
97 |
+
---
|
98 |
|
99 |
+
### Dataset
|
100 |
|
101 |
+
The [GoEmotions](https://huggingface.co/datasets/google-research-datasets/go_emotions) dataset is a multi-label emotion classification dataset derived from Reddit comments. It contains 58,000 examples with 28 emotion labels (e.g., admiration, amusement, anger, etc.), and it is annotated for multi-label classification.
|
102 |
|
103 |
+
---
|
104 |
|
105 |
+
### Evaluation Results
|
106 |
+
|
107 |
+
The model was evaluated on the test split of the GoEmotions dataset, using a threshold of `0.5` for binarizing predictions. The overall metrics were:
|
108 |
+
|
109 |
+
|
110 |
+
**Standard Results**:
|
111 |
+
|
112 |
+
Using the default threshold of 0.5.
|
113 |
+
|
114 |
+
*Macro Averages (test)*
|
115 |
+
- Accuracy: `0.970`
|
116 |
+
- Precision: `0.665`
|
117 |
+
- Recall: `0.389`
|
118 |
+
- F1: `0.465`
|
119 |
+
- MCC: `0.477`
|
120 |
+
|
121 |
+
*Per-Label Results (test)*
|
122 |
+
|
123 |
+
| Label | Accuracy | Precision | Recall | F1 | MCC | Support | Threshold |
|
124 |
+
|----------------|----------|-----------|--------|-------|-------|---------|-----------|
|
125 |
+
| admiration | 0.945 | 0.737 | 0.627 | 0.677 | 0.650 | 504 | 0.5 |
|
126 |
+
| amusement | 0.980 | 0.794 | 0.803 | 0.798 | 0.788 | 264 | 0.5 |
|
127 |
+
| anger | 0.968 | 0.680 | 0.258 | 0.374 | 0.406 | 198 | 0.5 |
|
128 |
+
| annoyance | 0.940 | 0.468 | 0.159 | 0.238 | 0.249 | 320 | 0.5 |
|
129 |
+
| approval | 0.942 | 0.614 | 0.276 | 0.381 | 0.387 | 351 | 0.5 |
|
130 |
+
| caring | 0.976 | 0.524 | 0.244 | 0.333 | 0.347 | 135 | 0.5 |
|
131 |
+
| confusion | 0.975 | 0.625 | 0.294 | 0.400 | 0.418 | 153 | 0.5 |
|
132 |
+
| curiosity | 0.951 | 0.538 | 0.423 | 0.473 | 0.452 | 284 | 0.5 |
|
133 |
+
| desire | 0.987 | 0.604 | 0.349 | 0.443 | 0.453 | 83 | 0.5 |
|
134 |
+
| disappointment | 0.974 | 0.656 | 0.139 | 0.230 | 0.294 | 151 | 0.5 |
|
135 |
+
| disapproval | 0.950 | 0.494 | 0.292 | 0.367 | 0.356 | 267 | 0.5 |
|
136 |
+
| disgust | 0.980 | 0.674 | 0.252 | 0.367 | 0.405 | 123 | 0.5 |
|
137 |
+
| embarrassment | 0.995 | 0.857 | 0.324 | 0.471 | 0.526 | 37 | 0.5 |
|
138 |
+
| excitement | 0.984 | 0.692 | 0.262 | 0.380 | 0.420 | 103 | 0.5 |
|
139 |
+
| fear | 0.992 | 0.796 | 0.551 | 0.652 | 0.659 | 78 | 0.5 |
|
140 |
+
| gratitude | 0.990 | 0.957 | 0.892 | 0.924 | 0.919 | 352 | 0.5 |
|
141 |
+
| grief | 0.999 | 0.000 | 0.000 | 0.000 | 0.000 | 6 | 0.5 |
|
142 |
+
| joy | 0.978 | 0.652 | 0.571 | 0.609 | 0.600 | 161 | 0.5 |
|
143 |
+
| love | 0.982 | 0.792 | 0.798 | 0.795 | 0.786 | 238 | 0.5 |
|
144 |
+
| nervousness | 0.996 | 0.636 | 0.304 | 0.412 | 0.439 | 23 | 0.5 |
|
145 |
+
| optimism | 0.975 | 0.743 | 0.403 | 0.523 | 0.536 | 186 | 0.5 |
|
146 |
+
| pride | 0.998 | 0.857 | 0.375 | 0.522 | 0.566 | 16 | 0.5 |
|
147 |
+
| realization | 0.973 | 0.514 | 0.124 | 0.200 | 0.244 | 145 | 0.5 |
|
148 |
+
| relief | 0.998 | 1.000 | 0.091 | 0.167 | 0.301 | 11 | 0.5 |
|
149 |
+
| remorse | 0.992 | 0.594 | 0.732 | 0.656 | 0.656 | 56 | 0.5 |
|
150 |
+
| sadness | 0.979 | 0.759 | 0.385 | 0.511 | 0.532 | 156 | 0.5 |
|
151 |
+
| surprise | 0.978 | 0.649 | 0.340 | 0.447 | 0.460 | 141 | 0.5 |
|
152 |
+
| neutral | 0.794 | 0.715 | 0.623 | 0.666 | 0.520 | 1787 | 0.5 |
|
153 |
+
|
154 |
+
**Optimal Results**:
|
155 |
+
|
156 |
+
Using the best threshold for each label based on the training set (tuned on F1).
|
157 |
+
|
158 |
+
*Macro Averages (test)*
|
159 |
+
- Accuracy: `0.967`
|
160 |
+
- Precision: `0.568`
|
161 |
+
- Recall: `0.531`
|
162 |
+
- F1: `0.541`
|
163 |
+
- MCC: `0.526`
|
164 |
+
|
165 |
+
*Per-Label Results (test)*
|
166 |
+
|
167 |
+
| Label | Accuracy | Precision | Recall | F1 | MCC | Support | Threshold |
|
168 |
+
|----------------|----------|-----------|--------|-------|-------|---------|-----------|
|
169 |
+
| admiration | 0.946 | 0.700 | 0.726 | 0.713 | 0.683 | 504 | 0.30 |
|
170 |
+
| amusement | 0.981 | 0.782 | 0.856 | 0.817 | 0.808 | 264 | 0.40 |
|
171 |
+
| anger | 0.963 | 0.490 | 0.510 | 0.500 | 0.481 | 198 | 0.20 |
|
172 |
+
| annoyance | 0.917 | 0.337 | 0.425 | 0.376 | 0.334 | 320 | 0.25 |
|
173 |
+
| approval | 0.922 | 0.411 | 0.473 | 0.440 | 0.399 | 351 | 0.25 |
|
174 |
+
| caring | 0.971 | 0.424 | 0.415 | 0.419 | 0.405 | 135 | 0.25 |
|
175 |
+
| confusion | 0.970 | 0.468 | 0.484 | 0.476 | 0.460 | 153 | 0.30 |
|
176 |
+
| curiosity | 0.947 | 0.493 | 0.630 | 0.553 | 0.530 | 284 | 0.35 |
|
177 |
+
| desire | 0.988 | 0.708 | 0.410 | 0.519 | 0.533 | 83 | 0.45 |
|
178 |
+
| disappointment | 0.963 | 0.321 | 0.291 | 0.306 | 0.287 | 151 | 0.25 |
|
179 |
+
| disapproval | 0.943 | 0.429 | 0.464 | 0.446 | 0.417 | 267 | 0.30 |
|
180 |
+
| disgust | 0.981 | 0.604 | 0.496 | 0.545 | 0.538 | 123 | 0.20 |
|
181 |
+
| embarrassment | 0.995 | 0.789 | 0.405 | 0.536 | 0.564 | 37 | 0.30 |
|
182 |
+
| excitement | 0.979 | 0.444 | 0.388 | 0.415 | 0.405 | 103 | 0.25 |
|
183 |
+
| fear | 0.991 | 0.693 | 0.667 | 0.680 | 0.675 | 78 | 0.30 |
|
184 |
+
| gratitude | 0.990 | 0.951 | 0.886 | 0.918 | 0.913 | 352 | 0.50 |
|
185 |
+
| grief | 0.999 | 0.500 | 0.500 | 0.500 | 0.499 | 6 | 0.20 |
|
186 |
+
| joy | 0.978 | 0.628 | 0.609 | 0.618 | 0.607 | 161 | 0.40 |
|
187 |
+
| love | 0.982 | 0.789 | 0.819 | 0.804 | 0.795 | 238 | 0.45 |
|
188 |
+
| nervousness | 0.995 | 0.375 | 0.391 | 0.383 | 0.380 | 23 | 0.25 |
|
189 |
+
| optimism | 0.970 | 0.558 | 0.597 | 0.577 | 0.561 | 186 | 0.15 |
|
190 |
+
| pride | 0.998 | 0.750 | 0.375 | 0.500 | 0.529 | 16 | 0.15 |
|
191 |
+
| realization | 0.968 | 0.326 | 0.200 | 0.248 | 0.240 | 145 | 0.25 |
|
192 |
+
| relief | 0.998 | 0.429 | 0.273 | 0.333 | 0.341 | 11 | 0.25 |
|
193 |
+
| remorse | 0.993 | 0.611 | 0.786 | 0.688 | 0.689 | 56 | 0.55 |
|
194 |
+
| sadness | 0.979 | 0.667 | 0.538 | 0.596 | 0.589 | 156 | 0.20 |
|
195 |
+
| surprise | 0.978 | 0.585 | 0.511 | 0.545 | 0.535 | 141 | 0.30 |
|
196 |
+
| neutral | 0.782 | 0.649 | 0.737 | 0.690 | 0.526 | 1787 | 0.40 |
|
197 |
|
|
|
198 |
|
199 |
+
---
|
200 |
|
201 |
+
### Intended Use
|
202 |
|
203 |
+
The model is designed for emotion classification in English-language text, particularly in domains such as:
|
204 |
|
205 |
+
- Social media sentiment analysis
|
206 |
+
- Customer feedback evaluation
|
207 |
+
- Behavioral or psychological research
|
208 |
|
209 |
+
---
|
210 |
|
211 |
+
### Limitations and Biases
|
212 |
|
213 |
+
- **Data Bias**: The dataset is based on Reddit comments, which may not generalize well to other domains or cultural contexts.
|
214 |
+
- **Underrepresented Classes**: Certain labels like "grief" and "relief" have very few examples, leading to lower performance for those classes.
|
215 |
+
- **Ambiguity**: Some training data contain annotation inconsistencies or ambiguities that may impact predictions.
|
216 |
|
217 |
+
---
|
218 |
|
219 |
+
---
|
220 |
|
221 |
+
### Environmental Impact
|
222 |
|
223 |
+
- **Hardware Used**: NVIDIA RTX4090
|
224 |
+
- **Training Time**: <1 hour
|
225 |
+
- **Carbon Emissions**: ~0.04 kg CO2 (calculated via [ML CO2 Impact Calculator](https://mlco2.github.io/impact)).
|
226 |
|
227 |
+
---
|
228 |
|
229 |
+
### Citation
|
230 |
|
231 |
+
If you use this model, please cite it as follows:
|
232 |
|
233 |
+
```bibtex
|
234 |
+
@inproceedings{YourCitation,
|
235 |
+
title = {Emotion Classification with ModernBERT},
|
236 |
+
author = {Enric Junqu\'e de Fortuny},
|
237 |
+
year = {2025},
|
238 |
+
howpublished = {\url{https://huggingface.co/cirimus/modernbert-base-go-emotions}},
|
239 |
+
}
|