ESPnet2 ASR model
cjli/iban_wavlm_transformer
This model was trained using iban recipe in espnet.
Run recipe
Follow the ESPnet installation instructions first, then:
cd espnet/egs2/iban/asr1
./run.sh --skip_data_prep false --skip_train true --download_model cjli/iban_wavlm_transformer
Results
WER
| dataset | Snt | Wrd | Corr | Sub | Del | Ins | Err | S.Err |
|---|---|---|---|---|---|---|---|---|
| decode_asr_asr_model_valid.acc.best/test | 104 | 2226 | 71.2 | 23.8 | 5.1 | 2.3 | 31.2 | 94.2 |
CER
| dataset | Snt | Wrd | Corr | Sub | Del | Ins | Err | S.Err |
|---|---|---|---|---|---|---|---|---|
| decode_asr_asr_model_valid.acc.best/test | 104 | 13527 | 91.8 | 2.7 | 5.4 | 2.2 | 10.4 | 94.2 |
TER
| dataset | Snt | Wrd | Corr | Sub | Del | Ins | Err | S.Err |
|---|---|---|---|---|---|---|---|---|
| decode_asr_asr_model_valid.acc.best/test | 104 | 5758 | 81.2 | 10.9 | 7.8 | 2.7 | 21.4 | 94.2 |
Citing ESPnet
@inproceedings{watanabe2018espnet,
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
title={{ESPnet}: End-to-End Speech Processing Toolkit},
year={2018},
booktitle={Proceedings of Interspeech},
pages={2207--2211},
doi={10.21437/Interspeech.2018-1456},
url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
or arXiv:
@misc{watanabe2018espnet,
title={ESPnet: End-to-End Speech Processing Toolkit},
author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
year={2018},
eprint={1804.00015},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- -