ESPnet2 ASR model

cjli/iban_wavlm_transformer

This model was trained using iban recipe in espnet.

Run recipe

Follow the ESPnet installation instructions first, then:

cd espnet/egs2/iban/asr1
./run.sh --skip_data_prep false --skip_train true --download_model cjli/iban_wavlm_transformer

Results

WER

dataset Snt Wrd Corr Sub Del Ins Err S.Err
decode_asr_asr_model_valid.acc.best/test 104 2226 71.2 23.8 5.1 2.3 31.2 94.2

CER

dataset Snt Wrd Corr Sub Del Ins Err S.Err
decode_asr_asr_model_valid.acc.best/test 104 13527 91.8 2.7 5.4 2.2 10.4 94.2

TER

dataset Snt Wrd Corr Sub Del Ins Err S.Err
decode_asr_asr_model_valid.acc.best/test 104 5758 81.2 10.9 7.8 2.7 21.4 94.2

Citing ESPnet

@inproceedings{watanabe2018espnet,
  author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
  title={{ESPnet}: End-to-End Speech Processing Toolkit},
  year={2018},
  booktitle={Proceedings of Interspeech},
  pages={2207--2211},
  doi={10.21437/Interspeech.2018-1456},
  url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}

or arXiv:

@misc{watanabe2018espnet,
  title={ESPnet: End-to-End Speech Processing Toolkit},
  author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
  year={2018},
  eprint={1804.00015},
  archivePrefix={arXiv},
  primaryClass={cs.CL}
}
Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support