clapAI/ModernBERT-base-VSMEC-ep50
This model is a fine-tuned version of answerdotai/ModernBERT-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 3.0842
- Micro F1: 51.1662
- Micro Precision: 51.1662
- Micro Recall: 51.1662
- Macro F1: 43.7557
- Macro Precision: 45.2358
- Macro Recall: 43.1885
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 50.0
Training results
Training Loss | Epoch | Step | Validation Loss | Micro F1 | Micro Precision | Micro Recall | Macro F1 | Macro Precision | Macro Recall |
---|---|---|---|---|---|---|---|---|---|
7.1297 | 1.0 | 22 | 1.7270 | 29.1545 | 29.1545 | 29.1545 | 16.9387 | 15.9469 | 18.7182 |
6.7 | 2.0 | 44 | 1.6690 | 31.7784 | 31.7784 | 31.7784 | 16.4776 | 28.9622 | 19.6919 |
6.4734 | 3.0 | 66 | 1.5725 | 39.3586 | 39.3586 | 39.3586 | 23.8242 | 23.6632 | 27.7820 |
5.625 | 4.0 | 88 | 1.4990 | 42.2741 | 42.2741 | 42.2741 | 27.8517 | 34.6415 | 28.7210 |
4.7406 | 5.0 | 110 | 1.4739 | 45.7726 | 45.7726 | 45.7726 | 38.7619 | 41.6066 | 38.3720 |
4.2664 | 6.0 | 132 | 1.4690 | 44.4606 | 44.4606 | 44.4606 | 34.9572 | 38.4359 | 35.7133 |
2.968 | 7.0 | 154 | 1.5695 | 46.3557 | 46.3557 | 46.3557 | 38.7596 | 44.9462 | 38.5572 |
1.8371 | 8.0 | 176 | 1.6301 | 48.8338 | 48.8338 | 48.8338 | 40.1485 | 44.4797 | 39.6512 |
0.998 | 9.0 | 198 | 1.7963 | 47.2303 | 47.2303 | 47.2303 | 39.2695 | 44.6568 | 38.6126 |
0.3793 | 10.0 | 220 | 1.8679 | 50.1458 | 50.1458 | 50.1458 | 40.9779 | 44.9562 | 39.9607 |
0.1684 | 11.0 | 242 | 2.1732 | 49.2711 | 49.2711 | 49.2711 | 41.2788 | 45.8904 | 39.6737 |
0.107 | 12.0 | 264 | 2.3095 | 46.6472 | 46.6472 | 46.6472 | 39.2907 | 44.2685 | 38.2952 |
0.0577 | 13.0 | 286 | 2.3684 | 48.3965 | 48.3965 | 48.3965 | 40.5603 | 45.0383 | 39.7106 |
0.1392 | 14.0 | 308 | 2.6708 | 47.5219 | 47.5219 | 47.5219 | 39.7073 | 45.9608 | 38.7368 |
0.0391 | 15.0 | 330 | 2.5045 | 48.6880 | 48.6880 | 48.6880 | 41.3458 | 44.3799 | 40.3860 |
0.0709 | 16.0 | 352 | 2.7772 | 49.8542 | 49.8542 | 49.8542 | 41.1807 | 49.0005 | 39.2832 |
0.0353 | 17.0 | 374 | 2.6289 | 46.3557 | 46.3557 | 46.3557 | 39.5522 | 41.4650 | 39.3228 |
0.0168 | 18.0 | 396 | 2.6308 | 47.5219 | 47.5219 | 47.5219 | 42.2655 | 44.2762 | 41.7151 |
0.046 | 19.0 | 418 | 2.6696 | 47.2303 | 47.2303 | 47.2303 | 40.3353 | 41.2212 | 40.6420 |
0.0226 | 20.0 | 440 | 2.6834 | 49.7085 | 49.7085 | 49.7085 | 43.1286 | 44.1373 | 42.6577 |
0.0104 | 21.0 | 462 | 2.9119 | 48.9796 | 48.9796 | 48.9796 | 42.5756 | 45.0299 | 42.4775 |
0.0116 | 22.0 | 484 | 3.1352 | 47.8134 | 47.8134 | 47.8134 | 41.2449 | 45.3324 | 40.3429 |
0.0135 | 23.0 | 506 | 2.8475 | 51.0204 | 51.0204 | 51.0204 | 44.5566 | 48.2813 | 43.4719 |
0.006 | 24.0 | 528 | 3.0071 | 50.0 | 50.0 | 50.0 | 43.0101 | 44.3103 | 42.8316 |
0.0014 | 25.0 | 550 | 3.0842 | 51.1662 | 51.1662 | 51.1662 | 43.7557 | 45.2358 | 43.1885 |
0.0004 | 26.0 | 572 | 3.1024 | 48.2507 | 48.2507 | 48.2507 | 41.5677 | 43.0218 | 40.8334 |
0.0002 | 27.0 | 594 | 3.1003 | 49.7085 | 49.7085 | 49.7085 | 43.6808 | 44.7579 | 43.1511 |
0.0067 | 28.0 | 616 | 3.1205 | 49.2711 | 49.2711 | 49.2711 | 42.6753 | 44.2513 | 41.9035 |
0.0051 | 29.0 | 638 | 3.1366 | 49.2711 | 49.2711 | 49.2711 | 42.5911 | 44.0526 | 41.8990 |
0.0001 | 30.0 | 660 | 3.1395 | 49.8542 | 49.8542 | 49.8542 | 44.0969 | 45.2099 | 43.5805 |
0.0001 | 31.0 | 682 | 3.1607 | 49.4169 | 49.4169 | 49.4169 | 43.5479 | 44.8908 | 42.9051 |
0.0001 | 32.0 | 704 | 3.1695 | 48.9796 | 48.9796 | 48.9796 | 42.7450 | 44.1869 | 42.1162 |
0.003 | 33.0 | 726 | 3.1716 | 49.5627 | 49.5627 | 49.5627 | 43.5619 | 44.8377 | 43.0366 |
0.0032 | 34.0 | 748 | 3.1751 | 49.5627 | 49.5627 | 49.5627 | 43.6102 | 44.8916 | 43.1014 |
0.0001 | 35.0 | 770 | 3.1795 | 49.7085 | 49.7085 | 49.7085 | 43.4435 | 44.8682 | 42.8522 |
0.0001 | 36.0 | 792 | 3.1832 | 49.5627 | 49.5627 | 49.5627 | 43.1845 | 44.6756 | 42.5562 |
0.0001 | 37.0 | 814 | 3.1832 | 49.7085 | 49.7085 | 49.7085 | 43.7243 | 44.9679 | 43.2027 |
0.0035 | 38.0 | 836 | 3.1926 | 49.7085 | 49.7085 | 49.7085 | 43.8761 | 45.0737 | 43.3237 |
0.0001 | 39.0 | 858 | 3.1918 | 49.5627 | 49.5627 | 49.5627 | 43.6425 | 44.9685 | 43.0969 |
0.0001 | 40.0 | 880 | 3.1918 | 49.8542 | 49.8542 | 49.8542 | 44.0461 | 45.3099 | 43.5243 |
0.0001 | 41.0 | 902 | 3.1860 | 49.4169 | 49.4169 | 49.4169 | 43.5586 | 44.8246 | 43.0302 |
0.0001 | 42.0 | 924 | 3.1926 | 49.2711 | 49.2711 | 49.2711 | 43.4018 | 44.6383 | 42.8685 |
0.0001 | 43.0 | 946 | 3.2005 | 49.4169 | 49.4169 | 49.4169 | 43.3200 | 44.5562 | 42.7841 |
0.0019 | 44.0 | 968 | 3.1939 | 49.4169 | 49.4169 | 49.4169 | 43.3207 | 44.6480 | 42.7451 |
0.002 | 45.0 | 990 | 3.1903 | 49.5627 | 49.5627 | 49.5627 | 43.7072 | 44.8315 | 43.2268 |
0.002 | 46.0 | 1012 | 3.1801 | 50.1458 | 50.1458 | 50.1458 | 44.2446 | 45.4932 | 43.7014 |
0.0001 | 47.0 | 1034 | 3.1941 | 49.5627 | 49.5627 | 49.5627 | 43.5439 | 44.7510 | 43.0411 |
0.0001 | 47.7356 | 1050 | 3.1976 | 49.5627 | 49.5627 | 49.5627 | 43.4123 | 44.6492 | 42.9112 |
Framework versions
- Transformers 4.50.0
- Pytorch 2.4.0+cu121
- Datasets 2.15.0
- Tokenizers 0.21.1
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for clapAI/ModernBERT-base-VSMEC-ep50
Base model
answerdotai/ModernBERT-base