clapAI/ModernBERT-base-ViHSD-ep50

This model is a fine-tuned version of answerdotai/ModernBERT-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1876
  • Micro F1: 89.9371
  • Micro Precision: 89.9371
  • Micro Recall: 89.9371
  • Macro F1: 86.0668
  • Macro Precision: 88.4407
  • Macro Recall: 84.2926

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 50.0

Training results

Training Loss Epoch Step Validation Loss Micro F1 Micro Precision Micro Recall Macro F1 Macro Precision Macro Recall
1.541 1.0 56 0.3452 85.8491 85.8491 85.8491 78.4177 86.0731 75.0986
1.0652 2.0 112 0.3162 87.4214 87.4214 87.4214 82.5192 84.8517 80.8292
1.0885 3.0 168 0.2911 88.0503 88.0503 88.0503 83.9452 84.8136 83.1858
0.8368 4.0 224 0.2861 88.8050 88.8050 88.8050 83.7964 88.6088 80.9531
0.7777 5.0 280 0.2805 89.3082 89.3082 89.3082 85.3561 87.1360 83.9506
0.4158 6.0 336 0.3528 88.4277 88.4277 88.4277 84.3174 85.5629 83.2783
0.3086 7.0 392 0.4122 89.4340 89.4340 89.4340 85.1781 88.2062 83.0681
0.191 8.0 448 0.4914 88.8050 88.8050 88.8050 84.5839 86.5890 83.0483
0.1652 9.0 504 0.5783 88.3019 88.3019 88.3019 83.9491 85.7456 82.5491
0.1177 10.0 560 0.5563 87.3585 87.3585 87.3585 83.7779 83.0858 84.5744
0.1236 11.0 616 0.7119 85.4717 85.4717 85.4717 82.1129 80.6222 84.4346
0.058 12.0 672 0.6722 88.3019 88.3019 88.3019 84.2832 85.1600 83.5161
0.0767 13.0 728 0.6633 88.6164 88.6164 88.6164 84.3665 86.2274 82.9215
0.0607 14.0 784 0.6969 88.8050 88.8050 88.8050 85.3984 85.1782 85.6271
0.066 15.0 840 0.9945 88.6164 88.6164 88.6164 83.1966 89.3007 79.9399
0.0474 16.0 896 0.8278 88.1761 88.1761 88.1761 84.6267 84.3094 84.9626
0.0634 17.0 952 0.7015 87.2956 87.2956 87.2956 83.6848 83.0154 84.4515
0.0188 18.0 1008 0.9059 88.8679 88.8679 88.8679 85.1323 85.7851 84.5411
0.028 19.0 1064 0.9812 89.3082 89.3082 89.3082 85.3034 87.2576 83.7894
0.0704 20.0 1120 0.9311 88.3648 88.3648 88.3648 84.5892 84.9113 84.2836
0.0363 21.0 1176 0.9205 88.7421 88.7421 88.7421 85.4197 84.9700 85.9071
0.0025 22.0 1232 0.9776 89.6855 89.6855 89.6855 85.7964 87.8686 84.2042
0.0188 23.0 1288 1.1122 88.9937 88.9937 88.9937 84.6616 87.2876 82.7722
0.0282 24.0 1344 1.0915 89.3711 89.3711 89.3711 85.2695 87.6416 83.5093
0.0136 25.0 1400 1.1382 88.9308 88.9308 88.9308 84.7294 86.8333 83.1329
0.0 26.0 1456 1.1641 89.6855 89.6855 89.6855 85.8476 87.7402 84.3653
0.0 27.0 1512 1.1644 89.7484 89.7484 89.7484 85.8702 87.9931 84.2464
0.0 28.0 1568 1.1839 89.6855 89.6855 89.6855 85.7446 88.0020 84.0430
0.0 29.0 1624 1.1693 89.6226 89.6226 89.6226 85.7741 87.6184 84.3231
0.0 30.0 1680 1.1933 89.5597 89.5597 89.5597 85.4909 88.0249 83.6361
0.0063 31.0 1736 1.1838 89.4969 89.4969 89.4969 85.5497 87.5624 83.9968
0.0013 32.0 1792 1.1904 89.8113 89.8113 89.8113 85.8926 88.2556 84.1275
0.0 33.0 1848 1.1758 89.6855 89.6855 89.6855 85.8221 87.8038 84.2847
0.0009 34.0 1904 1.1772 89.4969 89.4969 89.4969 85.5758 87.4993 84.0774
0.0 35.0 1960 1.1786 89.8742 89.8742 89.8742 86.0689 88.1097 84.4921
0.0069 36.0 2016 1.1819 89.6855 89.6855 89.6855 85.8221 87.8038 84.2847
0.001 37.0 2072 1.1876 89.9371 89.9371 89.9371 86.0668 88.4407 84.2926
0.0 38.0 2128 1.1881 89.5597 89.5597 89.5597 85.5971 87.7511 83.9585
0.0 39.0 2184 1.1881 89.5597 89.5597 89.5597 85.5971 87.7511 83.9585
0.0 40.0 2240 1.1869 89.6855 89.6855 89.6855 85.7706 87.9347 84.1236
0.001 41.0 2296 1.1930 89.8742 89.8742 89.8742 85.9668 88.3835 84.1698
0.0 42.0 2352 1.1892 89.8113 89.8113 89.8113 85.9185 88.1863 84.2081
0.0 43.0 2408 1.1840 89.6855 89.6855 89.6855 85.7446 88.0020 84.0430
0.0 44.0 2464 1.1925 89.5597 89.5597 89.5597 85.6232 87.6858 84.0390
0.0 45.0 2520 1.1892 89.6226 89.6226 89.6226 85.6968 87.8099 84.0813
0.0009 46.0 2576 1.1895 89.7484 89.7484 89.7484 85.8186 88.1285 84.0852
0.0 47.0 2632 1.1887 89.8742 89.8742 89.8742 86.0182 88.2441 84.3309
0.0 48.0 2688 1.1933 89.7484 89.7484 89.7484 85.8445 88.0601 84.1658
0.0 49.0 2744 1.1901 89.7484 89.7484 89.7484 85.8186 88.1285 84.0852
0.0043 50.0 2800 1.1904 89.6226 89.6226 89.6226 85.6708 87.8762 84.0007

Framework versions

  • Transformers 4.50.0
  • Pytorch 2.4.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.21.1
Downloads last month
0
Safetensors
Model size
150M params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for clapAI/ModernBERT-base-ViHSD-ep50

Finetuned
(529)
this model