clapAI/ModernBERT-base-ViHSD-ep50
This model is a fine-tuned version of answerdotai/ModernBERT-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.1876
- Micro F1: 89.9371
- Micro Precision: 89.9371
- Micro Recall: 89.9371
- Macro F1: 86.0668
- Macro Precision: 88.4407
- Macro Recall: 84.2926
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 50.0
Training results
Training Loss | Epoch | Step | Validation Loss | Micro F1 | Micro Precision | Micro Recall | Macro F1 | Macro Precision | Macro Recall |
---|---|---|---|---|---|---|---|---|---|
1.541 | 1.0 | 56 | 0.3452 | 85.8491 | 85.8491 | 85.8491 | 78.4177 | 86.0731 | 75.0986 |
1.0652 | 2.0 | 112 | 0.3162 | 87.4214 | 87.4214 | 87.4214 | 82.5192 | 84.8517 | 80.8292 |
1.0885 | 3.0 | 168 | 0.2911 | 88.0503 | 88.0503 | 88.0503 | 83.9452 | 84.8136 | 83.1858 |
0.8368 | 4.0 | 224 | 0.2861 | 88.8050 | 88.8050 | 88.8050 | 83.7964 | 88.6088 | 80.9531 |
0.7777 | 5.0 | 280 | 0.2805 | 89.3082 | 89.3082 | 89.3082 | 85.3561 | 87.1360 | 83.9506 |
0.4158 | 6.0 | 336 | 0.3528 | 88.4277 | 88.4277 | 88.4277 | 84.3174 | 85.5629 | 83.2783 |
0.3086 | 7.0 | 392 | 0.4122 | 89.4340 | 89.4340 | 89.4340 | 85.1781 | 88.2062 | 83.0681 |
0.191 | 8.0 | 448 | 0.4914 | 88.8050 | 88.8050 | 88.8050 | 84.5839 | 86.5890 | 83.0483 |
0.1652 | 9.0 | 504 | 0.5783 | 88.3019 | 88.3019 | 88.3019 | 83.9491 | 85.7456 | 82.5491 |
0.1177 | 10.0 | 560 | 0.5563 | 87.3585 | 87.3585 | 87.3585 | 83.7779 | 83.0858 | 84.5744 |
0.1236 | 11.0 | 616 | 0.7119 | 85.4717 | 85.4717 | 85.4717 | 82.1129 | 80.6222 | 84.4346 |
0.058 | 12.0 | 672 | 0.6722 | 88.3019 | 88.3019 | 88.3019 | 84.2832 | 85.1600 | 83.5161 |
0.0767 | 13.0 | 728 | 0.6633 | 88.6164 | 88.6164 | 88.6164 | 84.3665 | 86.2274 | 82.9215 |
0.0607 | 14.0 | 784 | 0.6969 | 88.8050 | 88.8050 | 88.8050 | 85.3984 | 85.1782 | 85.6271 |
0.066 | 15.0 | 840 | 0.9945 | 88.6164 | 88.6164 | 88.6164 | 83.1966 | 89.3007 | 79.9399 |
0.0474 | 16.0 | 896 | 0.8278 | 88.1761 | 88.1761 | 88.1761 | 84.6267 | 84.3094 | 84.9626 |
0.0634 | 17.0 | 952 | 0.7015 | 87.2956 | 87.2956 | 87.2956 | 83.6848 | 83.0154 | 84.4515 |
0.0188 | 18.0 | 1008 | 0.9059 | 88.8679 | 88.8679 | 88.8679 | 85.1323 | 85.7851 | 84.5411 |
0.028 | 19.0 | 1064 | 0.9812 | 89.3082 | 89.3082 | 89.3082 | 85.3034 | 87.2576 | 83.7894 |
0.0704 | 20.0 | 1120 | 0.9311 | 88.3648 | 88.3648 | 88.3648 | 84.5892 | 84.9113 | 84.2836 |
0.0363 | 21.0 | 1176 | 0.9205 | 88.7421 | 88.7421 | 88.7421 | 85.4197 | 84.9700 | 85.9071 |
0.0025 | 22.0 | 1232 | 0.9776 | 89.6855 | 89.6855 | 89.6855 | 85.7964 | 87.8686 | 84.2042 |
0.0188 | 23.0 | 1288 | 1.1122 | 88.9937 | 88.9937 | 88.9937 | 84.6616 | 87.2876 | 82.7722 |
0.0282 | 24.0 | 1344 | 1.0915 | 89.3711 | 89.3711 | 89.3711 | 85.2695 | 87.6416 | 83.5093 |
0.0136 | 25.0 | 1400 | 1.1382 | 88.9308 | 88.9308 | 88.9308 | 84.7294 | 86.8333 | 83.1329 |
0.0 | 26.0 | 1456 | 1.1641 | 89.6855 | 89.6855 | 89.6855 | 85.8476 | 87.7402 | 84.3653 |
0.0 | 27.0 | 1512 | 1.1644 | 89.7484 | 89.7484 | 89.7484 | 85.8702 | 87.9931 | 84.2464 |
0.0 | 28.0 | 1568 | 1.1839 | 89.6855 | 89.6855 | 89.6855 | 85.7446 | 88.0020 | 84.0430 |
0.0 | 29.0 | 1624 | 1.1693 | 89.6226 | 89.6226 | 89.6226 | 85.7741 | 87.6184 | 84.3231 |
0.0 | 30.0 | 1680 | 1.1933 | 89.5597 | 89.5597 | 89.5597 | 85.4909 | 88.0249 | 83.6361 |
0.0063 | 31.0 | 1736 | 1.1838 | 89.4969 | 89.4969 | 89.4969 | 85.5497 | 87.5624 | 83.9968 |
0.0013 | 32.0 | 1792 | 1.1904 | 89.8113 | 89.8113 | 89.8113 | 85.8926 | 88.2556 | 84.1275 |
0.0 | 33.0 | 1848 | 1.1758 | 89.6855 | 89.6855 | 89.6855 | 85.8221 | 87.8038 | 84.2847 |
0.0009 | 34.0 | 1904 | 1.1772 | 89.4969 | 89.4969 | 89.4969 | 85.5758 | 87.4993 | 84.0774 |
0.0 | 35.0 | 1960 | 1.1786 | 89.8742 | 89.8742 | 89.8742 | 86.0689 | 88.1097 | 84.4921 |
0.0069 | 36.0 | 2016 | 1.1819 | 89.6855 | 89.6855 | 89.6855 | 85.8221 | 87.8038 | 84.2847 |
0.001 | 37.0 | 2072 | 1.1876 | 89.9371 | 89.9371 | 89.9371 | 86.0668 | 88.4407 | 84.2926 |
0.0 | 38.0 | 2128 | 1.1881 | 89.5597 | 89.5597 | 89.5597 | 85.5971 | 87.7511 | 83.9585 |
0.0 | 39.0 | 2184 | 1.1881 | 89.5597 | 89.5597 | 89.5597 | 85.5971 | 87.7511 | 83.9585 |
0.0 | 40.0 | 2240 | 1.1869 | 89.6855 | 89.6855 | 89.6855 | 85.7706 | 87.9347 | 84.1236 |
0.001 | 41.0 | 2296 | 1.1930 | 89.8742 | 89.8742 | 89.8742 | 85.9668 | 88.3835 | 84.1698 |
0.0 | 42.0 | 2352 | 1.1892 | 89.8113 | 89.8113 | 89.8113 | 85.9185 | 88.1863 | 84.2081 |
0.0 | 43.0 | 2408 | 1.1840 | 89.6855 | 89.6855 | 89.6855 | 85.7446 | 88.0020 | 84.0430 |
0.0 | 44.0 | 2464 | 1.1925 | 89.5597 | 89.5597 | 89.5597 | 85.6232 | 87.6858 | 84.0390 |
0.0 | 45.0 | 2520 | 1.1892 | 89.6226 | 89.6226 | 89.6226 | 85.6968 | 87.8099 | 84.0813 |
0.0009 | 46.0 | 2576 | 1.1895 | 89.7484 | 89.7484 | 89.7484 | 85.8186 | 88.1285 | 84.0852 |
0.0 | 47.0 | 2632 | 1.1887 | 89.8742 | 89.8742 | 89.8742 | 86.0182 | 88.2441 | 84.3309 |
0.0 | 48.0 | 2688 | 1.1933 | 89.7484 | 89.7484 | 89.7484 | 85.8445 | 88.0601 | 84.1658 |
0.0 | 49.0 | 2744 | 1.1901 | 89.7484 | 89.7484 | 89.7484 | 85.8186 | 88.1285 | 84.0852 |
0.0043 | 50.0 | 2800 | 1.1904 | 89.6226 | 89.6226 | 89.6226 | 85.6708 | 87.8762 | 84.0007 |
Framework versions
- Transformers 4.50.0
- Pytorch 2.4.0+cu121
- Datasets 2.15.0
- Tokenizers 0.21.1
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for clapAI/ModernBERT-base-ViHSD-ep50
Base model
answerdotai/ModernBERT-base