clapAI/phobert-base-v2-VSMEC-ep30
This model is a fine-tuned version of vinai/phobert-base-v2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.1583
- Micro F1: 62.0991
- Micro Precision: 62.0991
- Micro Recall: 62.0991
- Macro F1: 54.8464
- Macro Precision: 56.9883
- Macro Recall: 53.8477
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 30.0
Training results
Training Loss | Epoch | Step | Validation Loss | Micro F1 | Micro Precision | Micro Recall | Macro F1 | Macro Precision | Macro Recall |
---|---|---|---|---|---|---|---|---|---|
1.7449 | 1.0 | 22 | 1.5945 | 45.1895 | 45.1895 | 45.1895 | 21.8900 | 26.9959 | 26.4581 |
1.4133 | 2.0 | 44 | 1.3106 | 54.8105 | 54.8105 | 54.8105 | 31.9928 | 29.9948 | 34.9272 |
1.175 | 3.0 | 66 | 1.2191 | 58.0175 | 58.0175 | 58.0175 | 36.7657 | 55.0529 | 38.6372 |
1.0596 | 4.0 | 88 | 1.1273 | 61.0787 | 61.0787 | 61.0787 | 48.3338 | 58.4381 | 47.7289 |
0.7949 | 5.0 | 110 | 1.1273 | 61.6618 | 61.6618 | 61.6618 | 53.0643 | 58.9490 | 53.2467 |
0.7303 | 6.0 | 132 | 1.1650 | 61.8076 | 61.8076 | 61.8076 | 55.9052 | 56.1562 | 58.1667 |
0.5736 | 7.0 | 154 | 1.1583 | 62.0991 | 62.0991 | 62.0991 | 54.8464 | 56.9883 | 53.8477 |
0.5044 | 8.0 | 176 | 1.2125 | 60.4956 | 60.4956 | 60.4956 | 54.4159 | 54.5775 | 55.6200 |
0.3788 | 9.0 | 198 | 1.2797 | 60.6414 | 60.6414 | 60.6414 | 55.5452 | 55.2250 | 57.9434 |
0.3342 | 10.0 | 220 | 1.3261 | 59.9125 | 59.9125 | 59.9125 | 54.1145 | 55.1820 | 55.2814 |
0.2737 | 11.0 | 242 | 1.4136 | 60.2041 | 60.2041 | 60.2041 | 53.4261 | 53.8931 | 56.8025 |
0.2206 | 12.0 | 264 | 1.4722 | 59.7668 | 59.7668 | 59.7668 | 52.5744 | 53.0730 | 53.5133 |
0.2027 | 13.0 | 286 | 1.4627 | 61.2245 | 61.2245 | 61.2245 | 56.6680 | 55.6226 | 58.6076 |
0.1578 | 14.0 | 308 | 1.5438 | 58.6006 | 58.6006 | 58.6006 | 52.1842 | 52.1753 | 53.1364 |
0.1236 | 15.0 | 330 | 1.5138 | 61.8076 | 61.8076 | 61.8076 | 55.5209 | 55.9526 | 55.4750 |
0.1341 | 16.0 | 352 | 1.6036 | 61.0787 | 61.0787 | 61.0787 | 56.2561 | 56.2149 | 57.6631 |
0.1001 | 17.0 | 374 | 1.6289 | 60.7872 | 60.7872 | 60.7872 | 56.2241 | 55.6502 | 58.4228 |
0.1029 | 18.0 | 396 | 1.6524 | 60.9329 | 60.9329 | 60.9329 | 56.0318 | 54.9867 | 57.7622 |
0.0843 | 19.0 | 418 | 1.6548 | 61.6618 | 61.6618 | 61.6618 | 56.2764 | 55.9093 | 57.2296 |
0.062 | 20.0 | 440 | 1.7255 | 61.0787 | 61.0787 | 61.0787 | 56.6280 | 55.9351 | 57.8994 |
0.0569 | 21.0 | 462 | 1.7440 | 60.3499 | 60.3499 | 60.3499 | 55.8524 | 55.9810 | 56.5576 |
0.0701 | 22.0 | 484 | 1.7638 | 61.2245 | 61.2245 | 61.2245 | 56.4928 | 56.5271 | 57.1536 |
0.0461 | 23.0 | 506 | 1.7829 | 60.9329 | 60.9329 | 60.9329 | 55.7281 | 55.4889 | 56.9253 |
0.0405 | 24.0 | 528 | 1.7763 | 61.2245 | 61.2245 | 61.2245 | 55.8934 | 55.9735 | 56.7029 |
0.0442 | 25.0 | 550 | 1.7976 | 60.7872 | 60.7872 | 60.7872 | 55.5945 | 55.6735 | 56.3259 |
0.0583 | 26.0 | 572 | 1.8069 | 61.0787 | 61.0787 | 61.0787 | 56.0711 | 56.1338 | 56.7661 |
0.0485 | 27.0 | 594 | 1.8212 | 60.7872 | 60.7872 | 60.7872 | 55.5985 | 55.6477 | 56.5246 |
0.0466 | 28.0 | 616 | 1.8198 | 60.7872 | 60.7872 | 60.7872 | 55.5764 | 55.5871 | 56.4900 |
0.0571 | 28.6437 | 630 | 1.8183 | 60.7872 | 60.7872 | 60.7872 | 55.5691 | 55.5735 | 56.4253 |
Framework versions
- Transformers 4.50.0
- Pytorch 2.4.0+cu121
- Datasets 2.15.0
- Tokenizers 0.21.1
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support