clapAI/phobert-base-v1-VSMEC-ep50
This model is a fine-tuned version of clapAI/phobert-base-v1-VSMEC-ep50 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.2808
- Micro F1: 63.2653
- Micro Precision: 63.2653
- Micro Recall: 63.2653
- Macro F1: 59.3649
- Macro Precision: 59.5968
- Macro Recall: 60.0346
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.01
- num_epochs: 0.0
Training results
Framework versions
- Transformers 4.50.0
- Pytorch 2.4.0+cu121
- Datasets 2.15.0
- Tokenizers 0.21.1
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for clapAI/xlm-roberta-base-VSMEC-ep50
Base model
vinai/phobert-base
Finetuned
clapAI/phobert-base-v1-VSMEC-ep10
Finetuned
clapAI/phobert-base-v1-VSMEC-ep20
Finetuned
clapAI/phobert-base-v1-VSMEC-ep30
Finetuned
clapAI/phobert-base-v1-VSMEC-ep50