clapAI/xlm-roberta-base-ViHSD-ep50

This model is a fine-tuned version of FacebookAI/xlm-roberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4267
  • Micro F1: 91.6981
  • Micro Precision: 91.6981
  • Micro Recall: 91.6981
  • Macro F1: 88.7494
  • Macro Precision: 90.1507
  • Macro Recall: 87.5713

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 256
  • optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 50.0

Training results

Training Loss Epoch Step Validation Loss Micro F1 Micro Precision Micro Recall Macro F1 Macro Precision Macro Recall
0.3566 1.0 56 0.3159 87.4214 87.4214 87.4214 81.0490 88.3189 77.6058
0.1918 2.0 112 0.2780 89.6226 89.6226 89.6226 86.5601 86.0956 87.0629
0.1995 3.0 168 0.2644 91.1321 91.1321 91.1321 87.5953 90.6506 85.4180
0.1661 4.0 224 0.2735 90.4403 90.4403 90.4403 86.4870 90.0802 84.0667
0.1304 5.0 280 0.2908 90.5660 90.5660 90.5660 87.2153 88.5626 86.0852
0.1223 6.0 336 0.2799 91.5094 91.5094 91.5094 88.6410 89.4330 87.9280
0.0858 7.0 392 0.2820 90.7547 90.7547 90.7547 87.6522 88.3510 87.0179
0.0834 8.0 448 0.3349 90.3774 90.3774 90.3774 87.0384 88.0992 86.1196
0.0757 9.0 504 0.4175 90.6918 90.6918 90.6918 87.4077 88.6792 86.3309
0.0559 10.0 560 0.4314 91.0692 91.0692 91.0692 87.5886 90.2648 85.6175
0.0502 11.0 616 0.4291 90.6918 90.6918 90.6918 87.2966 88.9900 85.9280
0.0413 12.0 672 0.4433 90.6289 90.6289 90.6289 87.1305 89.1346 85.5634
0.0379 13.0 728 0.4141 91.4465 91.4465 91.4465 88.4287 89.7340 87.3216
0.0319 14.0 784 0.4593 90.5660 90.5660 90.5660 86.9136 89.4415 85.0376
0.0357 15.0 840 0.4267 91.6981 91.6981 91.6981 88.7494 90.1507 87.5713
0.0335 16.0 896 0.4645 91.0692 91.0692 91.0692 88.1221 88.6493 87.6321
0.0204 17.0 952 0.4793 91.6352 91.6352 91.6352 88.7133 89.9027 87.6902
0.0184 18.0 1008 0.4481 91.6981 91.6981 91.6981 88.7494 90.1507 87.5713
0.0274 19.0 1064 0.5104 90.3145 90.3145 90.3145 87.1821 87.4953 86.8832
0.0171 20.0 1120 0.5093 90.8176 90.8176 90.8176 87.7671 88.3600 87.2213
0.0201 21.0 1176 0.5293 90.9434 90.9434 90.9434 87.7052 89.1543 86.5000
0.0106 22.0 1232 0.6152 90.9434 90.9434 90.9434 87.3904 90.1587 85.3718
0.0144 23.0 1288 0.6013 90.7547 90.7547 90.7547 87.4600 88.8578 86.2926
0.0052 24.0 1344 0.7308 91.1950 91.1950 91.1950 87.5538 91.2457 85.0574
0.0009 25.0 1400 0.6435 91.3208 91.3208 91.3208 88.0046 90.3981 86.1895
0.0084 26.0 1456 0.7136 91.3836 91.3836 91.3836 87.9922 90.8570 85.9094
0.0069 27.0 1512 0.6588 91.0063 91.0063 91.0063 87.5586 89.9755 85.7364
0.0044 28.0 1568 0.6204 90.9434 90.9434 90.9434 87.7480 89.0308 86.6612
0.0104 29.0 1624 0.6941 91.3208 91.3208 91.3208 87.6602 91.7369 84.9807
0.0014 30.0 1680 0.6836 91.5723 91.5723 91.5723 88.5590 90.0399 87.3256
0.0018 31.0 1736 0.7542 91.5723 91.5723 91.5723 88.4156 90.5348 86.7615
0.0001 32.0 1792 0.7364 91.4465 91.4465 91.4465 88.3473 89.9964 86.9993
0.0007 33.0 1848 0.7620 91.0063 91.0063 91.0063 87.8436 89.0884 86.7840
0.012 34.0 1904 0.7525 91.3836 91.3836 91.3836 87.9922 90.8570 85.9094
0.0001 35.0 1960 0.7146 91.1950 91.1950 91.1950 87.8750 90.0623 86.1855
0.0013 36.0 2016 0.7613 90.6289 90.6289 90.6289 87.3336 88.5620 86.2887
0.0006 37.0 2072 0.7886 91.6352 91.6352 91.6352 88.3428 91.2327 86.2396
0.0001 38.0 2128 0.8067 91.0063 91.0063 91.0063 87.7798 89.2746 86.5423
0.0 39.0 2184 0.8097 90.8176 90.8176 90.8176 87.6420 88.6803 86.7378
0.0 40.0 2240 0.8077 90.9434 90.9434 90.9434 87.7692 88.9708 86.7417
0.0004 41.0 2296 0.8075 91.0692 91.0692 91.0692 87.8332 89.4610 86.5039
0.0001 42.0 2352 0.8013 90.8805 90.8805 90.8805 87.6306 89.0346 86.4577
0.0001 43.0 2408 0.8036 91.0692 91.0692 91.0692 87.7681 89.6645 86.2622
0.0005 44.0 2464 0.8019 91.2579 91.2579 91.2579 88.0585 89.8306 86.6307
0.0045 45.0 2520 0.8000 91.2579 91.2579 91.2579 88.0372 89.9001 86.5501
0.0 46.0 2576 0.8028 91.1950 91.1950 91.1950 87.9833 89.7067 86.5885
0.0001 47.0 2632 0.8077 91.0692 91.0692 91.0692 87.8332 89.4610 86.5039
0.0 48.0 2688 0.8071 91.1321 91.1321 91.1321 87.9082 89.5835 86.5462
0.0002 49.0 2744 0.8076 91.0692 91.0692 91.0692 87.8332 89.4610 86.5039
0.0007 50.0 2800 0.8071 91.1950 91.1950 91.1950 88.0045 89.6394 86.6690

Framework versions

  • Transformers 4.50.0
  • Pytorch 2.4.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.21.1
Downloads last month
0
Safetensors
Model size
278M params
Tensor type
BF16
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for clapAI/xlm-roberta-base-ViHSD-ep50

Finetuned
(3062)
this model