simpletuner-lora
This is a standard PEFT LoRA derived from black-forest-labs/FLUX.1-dev.
The main validation prompt used during training was:
A photo-realistic image of a chenille furniture
Validation settings
- CFG:
3.0
- CFG Rescale:
0.0
- Steps:
20
- Sampler:
FlowMatchEulerDiscreteScheduler
- Seed:
42
- Resolution:
1024x1024
- Skip-layer guidance:
Note: The validation settings are not necessarily the same as the training settings.
You can find some example images in the following gallery:

- Prompt
- unconditional (blank prompt)
- Negative Prompt
- blurry, cropped, ugly

- Prompt
- A photo-realistic image of a chenille furniture
- Negative Prompt
- blurry, cropped, ugly
The text encoder was not trained. You may reuse the base model text encoder for inference.
Training settings
Training epochs: 0
Training steps: 5001
Learning rate: 8e-05
- Learning rate schedule: polynomial
- Warmup steps: 100
Max grad value: 2.0
Effective batch size: 1
- Micro-batch size: 1
- Gradient accumulation steps: 1
- Number of GPUs: 1
Gradient checkpointing: True
Prediction type: flow-matching (extra parameters=['shift=3', 'flux_guidance_mode=constant', 'flux_guidance_value=1.0', 'flow_matching_loss=compatible', 'flux_lora_target=all'])
Optimizer: adamw_bf16
Trainable parameter precision: Pure BF16
Base model precision:
no_change
Caption dropout probability: 5.0%
LoRA Rank: 64
LoRA Alpha: None
LoRA Dropout: 0.1
LoRA initialisation style: default
Datasets
chenille-dataset-256
- Repeats: 10
- Total number of images: 1164
- Total number of aspect buckets: 1
- Resolution: 0.065536 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
chenille-dataset-crop-256
- Repeats: 10
- Total number of images: 1164
- Total number of aspect buckets: 1
- Resolution: 0.065536 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
- Used for regularisation data: No
chenille-dataset-512
- Repeats: 10
- Total number of images: 1164
- Total number of aspect buckets: 1
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
chenille-dataset-crop-512
- Repeats: 10
- Total number of images: 1164
- Total number of aspect buckets: 1
- Resolution: 0.262144 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
- Used for regularisation data: No
chenille-dataset-768
- Repeats: 10
- Total number of images: 1164
- Total number of aspect buckets: 1
- Resolution: 0.589824 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
chenille-dataset-crop-768
- Repeats: 10
- Total number of images: 1164
- Total number of aspect buckets: 1
- Resolution: 0.589824 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
- Used for regularisation data: No
chenille-dataset-1024
- Repeats: 10
- Total number of images: 1131
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
chenille-dataset-crop-1024
- Repeats: 10
- Total number of images: 1131
- Total number of aspect buckets: 1
- Resolution: 1.048576 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
- Used for regularisation data: No
chenille-dataset-1440
- Repeats: 10
- Total number of images: 1075
- Total number of aspect buckets: 1
- Resolution: 2.0736 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
chenille-dataset-crop-1440
- Repeats: 10
- Total number of images: 1075
- Total number of aspect buckets: 1
- Resolution: 2.0736 megapixels
- Cropped: True
- Crop style: center
- Crop aspect: square
- Used for regularisation data: No
Inference
import torch
from diffusers import DiffusionPipeline
model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'cmyau/simpletuner-lora'
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
pipeline.load_lora_weights(adapter_id)
prompt = "A photo-realistic image of a chenille furniture"
## Optional: quantise the model to save on vram.
## Note: The model was not quantised during training, so it is not necessary to quantise it during inference time.
#from optimum.quanto import quantize, freeze, qint8
#quantize(pipeline.transformer, weights=qint8)
#freeze(pipeline.transformer)
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
model_output = pipeline(
prompt=prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
width=1024,
height=1024,
guidance_scale=3.0,
).images[0]
model_output.save("output.png", format="PNG")
- Downloads last month
- 7
Model tree for cmyau/simpletuner-lora
Base model
black-forest-labs/FLUX.1-dev