metadata
license: mit
language:
- pt
base_model:
- Qwen/Qwen2.5-0.5B-Instruct
pipeline_tag: text-generation
datasets:
- adalbertojunior/openHermes_portuguese
- cnmoro/smoltalk-555k-ptbr
- cnmoro/RagMixPTBR-Legal-Alpaca-2M
model-index:
- name: Qwen2.5-0.5B-Portuguese-v1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: ENEM Challenge (No Images)
type: eduagarcia/enem_challenge
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 37.86
name: accuracy
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Qwen2.5-0.5B-Portuguese-v1
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BLUEX (No Images)
type: eduagarcia-temp/BLUEX_without_images
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 34.63
name: accuracy
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Qwen2.5-0.5B-Portuguese-v1
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: OAB Exams
type: eduagarcia/oab_exams
split: train
args:
num_few_shot: 3
metrics:
- type: acc
value: 33.12
name: accuracy
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Qwen2.5-0.5B-Portuguese-v1
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 RTE
type: assin2
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 86.3
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Qwen2.5-0.5B-Portuguese-v1
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Assin2 STS
type: eduagarcia/portuguese_benchmark
split: test
args:
num_few_shot: 15
metrics:
- type: pearson
value: 54.3
name: pearson
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Qwen2.5-0.5B-Portuguese-v1
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: FaQuAD NLI
type: ruanchaves/faquad-nli
split: test
args:
num_few_shot: 15
metrics:
- type: f1_macro
value: 65.33
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Qwen2.5-0.5B-Portuguese-v1
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HateBR Binary
type: ruanchaves/hatebr
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 44.06
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Qwen2.5-0.5B-Portuguese-v1
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: PT Hate Speech Binary
type: hate_speech_portuguese
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 55.1
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Qwen2.5-0.5B-Portuguese-v1
name: Open Portuguese LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: tweetSentBR
type: eduagarcia/tweetsentbr_fewshot
split: test
args:
num_few_shot: 25
metrics:
- type: f1_macro
value: 45.96
name: f1-macro
source:
url: >-
https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard?query=cnmoro/Qwen2.5-0.5B-Portuguese-v1
name: Open Portuguese LLM Leaderboard
Qwen2.5-0.5B finetuned for proficiency in Portuguese language and increased intelligence.
https://ollama.com/cnmoro/Qwen2.5-0.5B-Portuguese-v1
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "cnmoro/Qwen2.5-0.5B-Portuguese-v1"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Escreva uma breve introdução sobre LLMs (Large Language Models) e suas aplicações."
# System prompt is always injected and hardcoded automatically
# for ideal performance in portuguese language.
# No need to write it again.
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
response
# LLM significa Large Language Models, que são modelos de linguagem computacional
# projetados para simular a inteligência humana no processamento e geração de texto.
# Esses modelos usam técnicas avançadas de aprendizado de máquina e redes neurais para
# compreender e gerar texto com base em dados de entrada. As aplicações de LLM incluem
# tradução automática, análise de sentimento, modelagem de tópicos e resposta a perguntas
# automatizadas. Eles estão sendo cada vez mais utilizados em diversas áreas, como
# saúde, educação e finanças, para melhorar a comunicação, as experiências dos clientes
# e os resultados da pesquisa.
Overall Results
Task | Metric | Value | Stdev |
---|---|---|---|
assin2_rte | f1_macro | 0.391 | 0.006 |
assin2_rte | acc | 0.527 | 0.007 |
assin2_sts | pearson | 0.115 | 0.014 |
assin2_sts | mse | 1.011 | N/A |
bluex | acc | 0.349 | 0.010 |
enem_challenge | acc | 0.363 | 0.007 |
faquad_nli | f1_macro | 0.595 | 0.017 |
faquad_nli | acc | 0.791 | 0.011 |
hatebr_offensive | f1_macro | 0.338 | 0.005 |
hatebr_offensive | acc | 0.502 | 0.009 |
oab_exams | acc | 0.326 | 0.006 |
portuguese_hate_speech | f1_macro | 0.412 | 0.004 |
portuguese_hate_speech | acc | 0.702 | 0.011 |
tweetsentbr | f1_macro | 0.455 | 0.005 |
tweetsentbr | acc | 0.594 | 0.008 |
Detailed Results
assin2_rte
Metric | Value | Stdev |
---|---|---|
f1_macro | 0.391 | 0.006 |
acc | 0.527 | 0.007 |
assin2_sts
Metric | Value | Stdev |
---|---|---|
pearson | 0.115 | 0.014 |
mse | 1.011 | N/A |
bluex
Exam ID | Metric | Value | Stdev |
---|---|---|---|
all | acc | 0.349 | 0.010 |
USP_2019 | acc | 0.225 | 0.038 |
USP_2024 | acc | 0.293 | 0.041 |
USP_2021 | acc | 0.423 | 0.040 |
UNICAMP_2018 | acc | 0.241 | 0.034 |
UNICAMP_2024 | acc | 0.444 | 0.043 |
USP_2020 | acc | 0.393 | 0.038 |
UNICAMP_2020 | acc | 0.291 | 0.035 |
UNICAMP_2021_1 | acc | 0.326 | 0.040 |
UNICAMP_2022 | acc | 0.487 | 0.046 |
USP_2022 | acc | 0.388 | 0.040 |
UNICAMP_2019 | acc | 0.280 | 0.037 |
UNICAMP_2021_2 | acc | 0.294 | 0.037 |
UNICAMP_2023 | acc | 0.558 | 0.044 |
USP_2023 | acc | 0.364 | 0.042 |
USP_2018 | acc | 0.278 | 0.035 |
enem_challenge
Exam ID | Metric | Value | Stdev |
---|---|---|---|
all | acc | 0.363 | 0.007 |
2016_2 | acc | 0.390 | 0.025 |
2015 | acc | 0.319 | 0.025 |
2011 | acc | 0.410 | 0.026 |
2013 | acc | 0.398 | 0.027 |
2017 | acc | 0.319 | 0.025 |
2022 | acc | 0.376 | 0.024 |
2009 | acc | 0.226 | 0.023 |
2010 | acc | 0.444 | 0.026 |
2012 | acc | 0.345 | 0.025 |
2014 | acc | 0.339 | 0.026 |
2016 | acc | 0.397 | 0.026 |
2023 | acc | 0.385 | 0.024 |
faquad_nli
Metric | Value | Stdev |
---|---|---|
f1_macro | 0.595 | 0.017 |
acc | 0.791 | 0.011 |
hatebr_offensive
Metric | Value | Stdev |
---|---|---|
f1_macro | 0.338 | 0.005 |
acc | 0.502 | 0.009 |
oab_exams
Exam ID | Metric | Value | Stdev |
---|---|---|---|
all | acc | 0.326 | 0.006 |
2018-25 | acc | 0.400 | 0.032 |
2016-20a | acc | 0.238 | 0.027 |
2011-05 | acc | 0.400 | 0.032 |
2012-08 | acc | 0.325 | 0.030 |
2012-09 | acc | 0.260 | 0.029 |
2014-13 | acc | 0.325 | 0.030 |
2011-03 | acc | 0.313 | 0.027 |
2016-20 | acc | 0.275 | 0.029 |
2012-06a | acc | 0.325 | 0.030 |
2017-22 | acc | 0.338 | 0.031 |
2015-16 | acc | 0.325 | 0.030 |
2013-12 | acc | 0.300 | 0.030 |
2017-24 | acc | 0.250 | 0.028 |
2012-06 | acc | 0.238 | 0.027 |
2014-14 | acc | 0.325 | 0.030 |
2013-11 | acc | 0.325 | 0.030 |
2013-10 | acc | 0.413 | 0.032 |
2010-02 | acc | 0.390 | 0.028 |
2016-21 | acc | 0.375 | 0.031 |
2015-18 | acc | 0.300 | 0.030 |
2015-17 | acc | 0.282 | 0.029 |
2016-19 | acc | 0.333 | 0.031 |
2012-07 | acc | 0.388 | 0.031 |
2017-23 | acc | 0.325 | 0.030 |
2011-04 | acc | 0.350 | 0.031 |
2010-01 | acc | 0.282 | 0.028 |
2014-15 | acc | 0.385 | 0.032 |
portuguese_hate_speech
Metric | Value | Stdev |
---|---|---|
f1_macro | 0.412 | 0.004 |
acc | 0.702 | 0.011 |
tweetsentbr
Metric | Value | Stdev |
---|---|---|
f1_macro | 0.455 | 0.005 |
acc | 0.594 | 0.008 |
Model Meta Information
- Truncated Samples: 3863
- Non-Truncated Samples: 10287
- Padded Samples: 0
- Non-Padded Samples: 14150
- Fewshots Truncated: 3863
- Has Chat Template: True
- Chat Type: system_user_assistant
- Number of GPUs: 1
- Accelerate Number of Processes: N/A
- Model SHA: None
- Model Data Type: torch.bfloat16
- Model Memory Footprint: 988065664 bytes
- Model Number of Parameters: 494032768
- Model is Loaded in 4bit: N/A
- Model is Loaded in 8bit: N/A
- Model is Quantized: N/A
- Model Device: cuda:0
- Batch Size: 1
- Max Length: 512
- Max Context Length 480
- Max Generation Tokens: 32
- Effective Batch Size: 1.0
Open Portuguese LLM Leaderboard Evaluation Results
Detailed results can be found here and on the 🚀 Open Portuguese LLM Leaderboard
Metric | Value |
---|---|
Average | 50.74 |
ENEM Challenge (No Images) | 37.86 |
BLUEX (No Images) | 34.63 |
OAB Exams | 33.12 |
Assin2 RTE | 86.30 |
Assin2 STS | 54.30 |
FaQuAD NLI | 65.33 |
HateBR Binary | 44.06 |
PT Hate Speech Binary | 55.10 |
tweetSentBR | 45.96 |