SentenceTransformer
This is a sentence-transformers model trained on the all_triplets_ms_marco-ptbr dataset. It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: inf tokens
- Output Dimensionality: 512 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: pt
Model Sources
Full Model Architecture
SentenceTransformer(
(0): StaticEmbedding(
(embedding): EmbeddingBag(29794, 512, mode='mean')
)
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("cnmoro/static-retrieval-distilbert-ptbr")
sentences = [
'o que ajuda a síndrome de ibs',
'óleo de hortelã-revestida com antecérico é amplamente utilizado para a síndrome do intestino irritável. Tem a intenção de reduzir a dor abdominal e inchaço da síndrome do intestino irritável. Peppermint é considerada uma erva carminativa, o que significa que é usado para eliminar o excesso de gás nos intestinos. Embora novas pesquisas sejam necessárias, estudos preliminares indicam que pode aliviar os sintomas da SII".',
'diarreia ou prisão de ventre que não responde ao tratamento domiciliar".',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
- Datasets:
NanoClimateFEVER
, NanoDBPedia
, NanoFEVER
, NanoFiQA2018
, NanoHotpotQA
, NanoMSMARCO
, NanoNFCorpus
, NanoNQ
, NanoQuoraRetrieval
, NanoSCIDOCS
, NanoArguAna
, NanoSciFact
and NanoTouche2020
- Evaluated with
InformationRetrievalEvaluator
Metric |
NanoClimateFEVER |
NanoDBPedia |
NanoFEVER |
NanoFiQA2018 |
NanoHotpotQA |
NanoMSMARCO |
NanoNFCorpus |
NanoNQ |
NanoQuoraRetrieval |
NanoSCIDOCS |
NanoArguAna |
NanoSciFact |
NanoTouche2020 |
cosine_accuracy@1 |
0.16 |
0.48 |
0.32 |
0.16 |
0.5 |
0.08 |
0.26 |
0.06 |
0.7 |
0.18 |
0.08 |
0.34 |
0.3061 |
cosine_accuracy@3 |
0.26 |
0.7 |
0.58 |
0.26 |
0.68 |
0.32 |
0.42 |
0.12 |
0.84 |
0.38 |
0.28 |
0.44 |
0.4898 |
cosine_accuracy@5 |
0.34 |
0.82 |
0.72 |
0.32 |
0.76 |
0.46 |
0.46 |
0.18 |
0.9 |
0.48 |
0.36 |
0.46 |
0.6122 |
cosine_accuracy@10 |
0.38 |
0.86 |
0.82 |
0.38 |
0.86 |
0.58 |
0.48 |
0.3 |
0.94 |
0.58 |
0.54 |
0.52 |
0.7959 |
cosine_precision@1 |
0.16 |
0.48 |
0.32 |
0.16 |
0.5 |
0.08 |
0.26 |
0.06 |
0.7 |
0.18 |
0.08 |
0.34 |
0.3061 |
cosine_precision@3 |
0.1 |
0.44 |
0.2 |
0.0933 |
0.2933 |
0.1067 |
0.2267 |
0.04 |
0.3067 |
0.1667 |
0.0933 |
0.1533 |
0.2857 |
cosine_precision@5 |
0.088 |
0.408 |
0.152 |
0.072 |
0.196 |
0.092 |
0.2 |
0.036 |
0.212 |
0.14 |
0.072 |
0.096 |
0.2857 |
cosine_precision@10 |
0.056 |
0.36 |
0.088 |
0.052 |
0.122 |
0.058 |
0.148 |
0.03 |
0.114 |
0.09 |
0.054 |
0.056 |
0.2714 |
cosine_recall@1 |
0.0723 |
0.0353 |
0.2867 |
0.0471 |
0.25 |
0.08 |
0.0391 |
0.06 |
0.644 |
0.0387 |
0.08 |
0.34 |
0.0173 |
cosine_recall@3 |
0.1223 |
0.1043 |
0.5467 |
0.1237 |
0.44 |
0.32 |
0.0709 |
0.11 |
0.7613 |
0.1047 |
0.28 |
0.43 |
0.0493 |
cosine_recall@5 |
0.169 |
0.1523 |
0.6933 |
0.1498 |
0.49 |
0.46 |
0.0885 |
0.17 |
0.848 |
0.1457 |
0.36 |
0.44 |
0.0802 |
cosine_recall@10 |
0.2163 |
0.2238 |
0.79 |
0.1992 |
0.61 |
0.58 |
0.0974 |
0.27 |
0.902 |
0.1857 |
0.54 |
0.495 |
0.154 |
cosine_ndcg@10 |
0.1735 |
0.4247 |
0.5416 |
0.1491 |
0.514 |
0.3176 |
0.2066 |
0.1483 |
0.7966 |
0.1755 |
0.2899 |
0.4216 |
0.2813 |
cosine_mrr@10 |
0.2267 |
0.6177 |
0.4798 |
0.2209 |
0.6078 |
0.2347 |
0.3372 |
0.1159 |
0.7832 |
0.2969 |
0.2127 |
0.3999 |
0.4445 |
cosine_map@100 |
0.1373 |
0.3112 |
0.4633 |
0.1091 |
0.4297 |
0.2464 |
0.0849 |
0.1221 |
0.7556 |
0.1247 |
0.2218 |
0.4072 |
0.1901 |
Nano BEIR
Metric |
Value |
cosine_accuracy@1 |
0.2789 |
cosine_accuracy@3 |
0.4438 |
cosine_accuracy@5 |
0.5286 |
cosine_accuracy@10 |
0.6181 |
cosine_precision@1 |
0.2789 |
cosine_precision@3 |
0.1927 |
cosine_precision@5 |
0.1577 |
cosine_precision@10 |
0.1153 |
cosine_recall@1 |
0.1531 |
cosine_recall@3 |
0.2664 |
cosine_recall@5 |
0.3267 |
cosine_recall@10 |
0.4049 |
cosine_ndcg@10 |
0.3416 |
cosine_mrr@10 |
0.3829 |
cosine_map@100 |
0.2772 |
Training Details
Training Dataset
all_triplets_ms_marco-ptbr
- Dataset: all_triplets_ms_marco-ptbr at f934503
- Size: 25,863,649 training samples
- Columns:
anchor
, positive
, and negative
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
negative |
type |
string |
string |
string |
details |
- min: 5 characters
- mean: 35.31 characters
- max: 105 characters
|
- min: 31 characters
- mean: 356.8 characters
- max: 1050 characters
|
- min: 13 characters
- mean: 359.92 characters
- max: 1153 characters
|
- Samples:
anchor |
positive |
negative |
partes mais quentes da califórnia em dezembro |
as melhores praias da Califórnia para o clima quente do inverno estão ao longo da costa sul, particularmente as margens viradas para o sul. As temperaturas mais quentes acontecem em Avila Beach, Long Beach e Laguna Beach, onde os dias se dem até pelo menos 67 graus F (19 C) em média em dezembro e janeiro". |
Outros destinos da ilha do Caribe com uma combinação de clima quente e não muita chuva em dezembro incluem Kingston, Jamaica (87 F), St. Kitts (85 F) e Nassau, Bahamas (79 F). Nos EUA continentais, o clima de férias mais quente em dezembro é mais frequentemente a Flórida. Tente afundar seus dedos na areia branca quente e macia de Nápoles e Sarasota, dois dos nossos locais de férias de inverno românticos da Flórida da Costa do Golfo da Flórida". |
definição de anosmia |
Anosmia (/aen-É-zmiÉ/) A sÉ-zmiÉ é a incapacidade de perceber o odor ou a falta de funcionamento da autaraction a perda do sentido. |
Anemia é um termo médico que se refere a um número reduzido de glóbulos vermelhos circulantes (RBC), hemoglobina (Hb), ou ambos. Não é uma doença específica, mas sim o resultado de algum outro processo de doença ou condição.nemia é um termo médico referindo-se a um número reduzido de glóbulos vermelhos circulantes (RBC), hemoglobina (Hb), ou ambos. Não é uma doença específica, mas sim o resultado de algum outro processo ou condição de doença". |
can fêmeas obter hemofilia |
uma fêmea que herda um afetado x cromossomo torna-se um portador de hemofilia que ela pode passar o gene afetado para seus filhos, além de uma mulher que é um portador às vezes pode ter sintomas de hemofilia na verdade alguns médicos descrevem essas mulheres como tendo mulheres leves que carregam o gene da hemofilia que carregam o gene da hemofilia e têm quaisquer sintomas do transtorno deve ser verificado e cuidado por um provedor de saúde de boa qualidade cuidados médicos e enfermeiros que podem evitar que os problemas sérios que saibam que muitos. |
Hemofilia é um X ligado ou sexo ligado a doença hereditária que significa que o defeito é realizado no cromossomo X. As fêmeas têm dois cromossomos X e os machos têm um cromossomo X e um cromossomo Y. O cromossomo X, que carrega o gene da hemofilia em homens, faz com que Fator VIII ou Fator IX esteja ausente ou deficiente (nível baixo). Cada criança de um portador de hemofilia tem 50% de chance de ser afetada pela hemofilia; seja ter hemofilia para um macho ou ser portadora de uma mulher". |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
512,
384,
256,
128,
64,
32,
16,
8
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Evaluation Dataset
all_triplets_ms_marco-ptbr
- Dataset: all_triplets_ms_marco-ptbr at f934503
- Size: 527,832 evaluation samples
- Columns:
anchor
, positive
, and negative
- Approximate statistics based on the first 1000 samples:
|
anchor |
positive |
negative |
type |
string |
string |
string |
details |
- min: 6 characters
- mean: 36.15 characters
- max: 193 characters
|
- min: 20 characters
- mean: 360.3 characters
- max: 1097 characters
|
- min: 14 characters
- mean: 365.67 characters
- max: 1145 characters
|
- Samples:
anchor |
positive |
negative |
diferença entre o ovo cozido duro e o ovo escalfado |
o ovo é escalfado (ou cozido) quando o branco é cozido e a gema ainda é escorrendo, um ovo cozido duro é cozido em sua casca por 7 a 8 minutos até que seja cozido sólido todo o caminho. Carmen D 4 anos atrás. Os polegares para cima. 0". |
mexidos, escalfados, fritos ou cozidos, e dado todas essas variações, a questão de longa duração que eles podem ser armazenados com segurança é uma boa a considerar. Uma bactéria chamada Salmonella enteritidis pode estar presente dentro da gema, mas ovos duros os torna seguros para comer". |
quando você pode coletar segurança social se deficientes |
Como a Segurança Social pagará benefícios de invalidez a uma pessoa com deficiência é determinada pela data em que você apresentou sua reivindicação de deficiência ao se candidatar à segurança social e/ou incapacidade da SSI. |
Se for esse o caso, você não terá mais direito a benefícios de Deficiência da Segurança Social, mas você pode ter direito a benefícios de aposentadoria da Previdência Social uma vez que você atinja a idade de 65 anos. Se você decidir voltar ao trabalho seus benefícios não vai parar imediatamente. Você pode ganhar renda em uma base de â-trialâ para até nove meses antes de seus benefícios de Deficiência Social são revogados. Se você tentar voltar ao trabalho e descobrir que você é incapaz de lidar com isso, seus Benefícios de Segurança Social não terminará.ou pode ganhar renda em uma base de âtrialâ por até nove meses antes de seus benefícios de deficientes de segurança social são revogados. Se você tentar voltar ao trabalho e descobrir que não consegue lidar com isso, seus Benefícios de Segurança Social não terminarão". |
número de contato da sede da união ocidental |
número de telefone da União Ocidental. O número e as etapas abaixo são votados no 1 de 4 por mais de 7190 clientes da Western Union. 800-999-9660. Suporte telefônico da Western Union. Leia as principais etapas e dicas abaixo. Eles chamam você em vez dissoNão esperando em espera. Free.ress 1 e continue pressionando 0. Este número de telefone é popular entre outros clientes da Western Union, mas não se esqueça de seguir os 6 passos mais abaixo". |
Neste artigo eu listei o número de telefone de serviço ao cliente Western Union essencial e o número de telefone de contato e números gratuitos para a Western Union. Western Union operando em muitos países, então eu listei números de telefone de atendimento ao cliente internacional Western Union. Se você é o cliente da Western Union e gosta de saber informações sobre produtos e serviços da Western Union, basta usar os seguintes números". |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
512,
384,
256,
128,
64,
32,
16,
8
],
"matryoshka_weights": [
1,
1,
1,
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: steps
per_device_train_batch_size
: 512
per_device_eval_batch_size
: 512
learning_rate
: 0.2
num_train_epochs
: 5
warmup_ratio
: 0.1
bf16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: steps
prediction_loss_only
: True
per_device_train_batch_size
: 512
per_device_eval_batch_size
: 512
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
torch_empty_cache_steps
: None
learning_rate
: 0.2
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 5
max_steps
: -1
lr_scheduler_type
: linear
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: False
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: None
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
include_for_metrics
: []
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
use_liger_kernel
: False
eval_use_gather_object
: False
average_tokens_across_devices
: False
prompts
: None
batch_sampler
: batch_sampler
multi_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch |
Step |
Training Loss |
Validation Loss |
NanoClimateFEVER_cosine_ndcg@10 |
NanoDBPedia_cosine_ndcg@10 |
NanoFEVER_cosine_ndcg@10 |
NanoFiQA2018_cosine_ndcg@10 |
NanoHotpotQA_cosine_ndcg@10 |
NanoMSMARCO_cosine_ndcg@10 |
NanoNFCorpus_cosine_ndcg@10 |
NanoNQ_cosine_ndcg@10 |
NanoQuoraRetrieval_cosine_ndcg@10 |
NanoSCIDOCS_cosine_ndcg@10 |
NanoArguAna_cosine_ndcg@10 |
NanoSciFact_cosine_ndcg@10 |
NanoTouche2020_cosine_ndcg@10 |
NanoBEIR_mean_cosine_ndcg@10 |
0.0000 |
1 |
66.3307 |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
- |
0.0198 |
1000 |
42.3936 |
27.4352 |
0.1314 |
0.3901 |
0.4362 |
0.0856 |
0.4261 |
0.2743 |
0.1524 |
0.1226 |
0.7497 |
0.1547 |
0.1544 |
0.4066 |
0.2984 |
0.2910 |
0.0396 |
2000 |
21.4189 |
17.5353 |
0.1443 |
0.4301 |
0.5087 |
0.1281 |
0.4315 |
0.2600 |
0.1859 |
0.1462 |
0.7842 |
0.1978 |
0.1944 |
0.4489 |
0.3432 |
0.3233 |
0.0594 |
3000 |
15.8675 |
14.6976 |
0.1579 |
0.4524 |
0.5459 |
0.1350 |
0.4307 |
0.2972 |
0.1980 |
0.1443 |
0.7807 |
0.1921 |
0.2016 |
0.4302 |
0.3561 |
0.3325 |
0.0792 |
4000 |
14.0655 |
13.5888 |
0.1803 |
0.4522 |
0.5321 |
0.1402 |
0.4479 |
0.2982 |
0.1914 |
0.1912 |
0.7992 |
0.2001 |
0.2143 |
0.4502 |
0.3432 |
0.3416 |
0.0990 |
5000 |
13.2932 |
13.0002 |
0.1926 |
0.4523 |
0.5118 |
0.1607 |
0.4451 |
0.3059 |
0.2048 |
0.2168 |
0.7903 |
0.1974 |
0.2387 |
0.4653 |
0.3520 |
0.3487 |
0.1188 |
6000 |
12.8258 |
12.6530 |
0.1998 |
0.4510 |
0.5437 |
0.1296 |
0.4506 |
0.3335 |
0.2100 |
0.1894 |
0.8074 |
0.1761 |
0.2423 |
0.4456 |
0.3688 |
0.3498 |
0.1386 |
7000 |
12.5101 |
12.3932 |
0.1775 |
0.4638 |
0.4978 |
0.1503 |
0.4547 |
0.3197 |
0.2037 |
0.1864 |
0.8178 |
0.1757 |
0.1987 |
0.4518 |
0.3382 |
0.3412 |
0.1584 |
8000 |
12.2601 |
12.1873 |
0.1884 |
0.4794 |
0.5263 |
0.1668 |
0.4764 |
0.3603 |
0.2115 |
0.1673 |
0.7835 |
0.1720 |
0.2266 |
0.4534 |
0.3535 |
0.3512 |
0.1782 |
9000 |
12.0884 |
12.0142 |
0.2139 |
0.4735 |
0.5170 |
0.1598 |
0.4498 |
0.3448 |
0.2002 |
0.1983 |
0.7901 |
0.1651 |
0.2351 |
0.4458 |
0.3240 |
0.3475 |
0.1980 |
10000 |
11.9352 |
11.8797 |
0.2123 |
0.4813 |
0.5146 |
0.1452 |
0.5095 |
0.3642 |
0.1983 |
0.1637 |
0.8041 |
0.1699 |
0.2384 |
0.4545 |
0.3198 |
0.3520 |
0.2178 |
11000 |
11.8034 |
11.7615 |
0.1776 |
0.4579 |
0.5237 |
0.1673 |
0.4808 |
0.3068 |
0.2009 |
0.1828 |
0.8173 |
0.1706 |
0.2572 |
0.4408 |
0.3205 |
0.3465 |
0.2376 |
12000 |
11.6906 |
11.6589 |
0.1789 |
0.4593 |
0.5512 |
0.1341 |
0.4894 |
0.3340 |
0.2106 |
0.1811 |
0.8192 |
0.1773 |
0.2381 |
0.4480 |
0.3209 |
0.3494 |
0.2573 |
13000 |
11.5868 |
11.5586 |
0.1877 |
0.4648 |
0.5137 |
0.1494 |
0.4939 |
0.3212 |
0.2193 |
0.2025 |
0.8120 |
0.1640 |
0.2452 |
0.4258 |
0.3561 |
0.3504 |
0.2771 |
14000 |
11.4752 |
11.4752 |
0.1938 |
0.4411 |
0.5186 |
0.1418 |
0.4839 |
0.3411 |
0.2106 |
0.1688 |
0.8217 |
0.1744 |
0.2768 |
0.4688 |
0.3384 |
0.3523 |
0.2969 |
15000 |
11.4299 |
11.3873 |
0.1989 |
0.4501 |
0.5109 |
0.1309 |
0.5037 |
0.3280 |
0.2040 |
0.1649 |
0.8035 |
0.1707 |
0.2549 |
0.4714 |
0.3308 |
0.3479 |
0.3167 |
16000 |
11.3369 |
11.3173 |
0.1880 |
0.4666 |
0.4988 |
0.1430 |
0.5086 |
0.3385 |
0.2054 |
0.1786 |
0.8181 |
0.1712 |
0.2766 |
0.4555 |
0.3220 |
0.3516 |
0.3365 |
17000 |
11.2737 |
11.2503 |
0.1748 |
0.4673 |
0.4849 |
0.1485 |
0.4902 |
0.3567 |
0.2160 |
0.1501 |
0.8059 |
0.1659 |
0.2476 |
0.4728 |
0.3121 |
0.3456 |
0.3563 |
18000 |
11.2138 |
11.1802 |
0.1738 |
0.4619 |
0.5408 |
0.1426 |
0.4986 |
0.3427 |
0.2193 |
0.1594 |
0.7995 |
0.1597 |
0.2567 |
0.4331 |
0.3140 |
0.3463 |
0.3761 |
19000 |
11.1662 |
11.1250 |
0.1625 |
0.4522 |
0.5313 |
0.1419 |
0.5093 |
0.3499 |
0.1982 |
0.1713 |
0.8000 |
0.1693 |
0.2332 |
0.4799 |
0.3353 |
0.3488 |
0.3959 |
20000 |
11.0674 |
11.0633 |
0.1627 |
0.4608 |
0.5167 |
0.1368 |
0.5025 |
0.3653 |
0.2090 |
0.1743 |
0.8166 |
0.1670 |
0.2281 |
0.4614 |
0.3408 |
0.3494 |
0.4157 |
21000 |
11.0251 |
11.0233 |
0.1730 |
0.4695 |
0.4854 |
0.1417 |
0.5211 |
0.3393 |
0.2246 |
0.1477 |
0.8146 |
0.1692 |
0.2148 |
0.4584 |
0.3356 |
0.3458 |
0.4355 |
22000 |
10.9932 |
10.9695 |
0.1709 |
0.4630 |
0.5161 |
0.1400 |
0.4945 |
0.3507 |
0.2226 |
0.1585 |
0.8103 |
0.1595 |
0.2355 |
0.4325 |
0.3343 |
0.3453 |
0.4553 |
23000 |
10.9327 |
10.9186 |
0.1803 |
0.4509 |
0.5341 |
0.1454 |
0.5241 |
0.3485 |
0.2032 |
0.1480 |
0.8056 |
0.1634 |
0.2206 |
0.4557 |
0.3266 |
0.3466 |
0.4751 |
24000 |
10.8936 |
10.8830 |
0.1891 |
0.4450 |
0.5202 |
0.1485 |
0.5006 |
0.3427 |
0.2079 |
0.1639 |
0.8115 |
0.1731 |
0.2213 |
0.4269 |
0.3424 |
0.3456 |
0.4949 |
25000 |
10.8654 |
10.8392 |
0.1610 |
0.4479 |
0.5524 |
0.1547 |
0.5002 |
0.3377 |
0.2128 |
0.1802 |
0.7996 |
0.1937 |
0.2240 |
0.4506 |
0.3097 |
0.3480 |
0.5147 |
26000 |
10.8168 |
10.7826 |
0.1784 |
0.4558 |
0.5211 |
0.1482 |
0.5099 |
0.3531 |
0.2165 |
0.1456 |
0.8090 |
0.1782 |
0.2367 |
0.4240 |
0.3251 |
0.3463 |
0.5345 |
27000 |
10.7554 |
10.7164 |
0.1841 |
0.4593 |
0.5183 |
0.1377 |
0.4843 |
0.3469 |
0.2066 |
0.1632 |
0.8099 |
0.1818 |
0.2779 |
0.4305 |
0.3270 |
0.3483 |
0.5543 |
28000 |
10.6605 |
10.6510 |
0.1780 |
0.4566 |
0.5328 |
0.1439 |
0.4923 |
0.3519 |
0.2152 |
0.1507 |
0.8060 |
0.1838 |
0.2585 |
0.4256 |
0.3147 |
0.3469 |
0.5741 |
29000 |
10.6202 |
10.5959 |
0.1866 |
0.4668 |
0.5370 |
0.1553 |
0.5118 |
0.3699 |
0.2265 |
0.1553 |
0.8090 |
0.1732 |
0.2614 |
0.4287 |
0.3193 |
0.3539 |
0.5939 |
30000 |
10.5399 |
10.5401 |
0.1862 |
0.4593 |
0.5237 |
0.1510 |
0.5273 |
0.3353 |
0.2101 |
0.1594 |
0.8092 |
0.1709 |
0.2643 |
0.4308 |
0.3199 |
0.3498 |
0.6137 |
31000 |
10.5212 |
10.4866 |
0.2000 |
0.4547 |
0.5131 |
0.1450 |
0.5213 |
0.3341 |
0.2136 |
0.1518 |
0.8094 |
0.1726 |
0.2911 |
0.4246 |
0.3388 |
0.3516 |
0.6335 |
32000 |
10.4767 |
10.4375 |
0.1873 |
0.4487 |
0.5162 |
0.1377 |
0.5186 |
0.3463 |
0.2184 |
0.1711 |
0.8087 |
0.1769 |
0.2871 |
0.4441 |
0.3297 |
0.3531 |
0.6533 |
33000 |
10.4247 |
10.4089 |
0.1949 |
0.4572 |
0.5322 |
0.1524 |
0.5286 |
0.3309 |
0.2204 |
0.1464 |
0.8006 |
0.1765 |
0.2727 |
0.4314 |
0.3323 |
0.3520 |
0.6731 |
34000 |
10.389 |
10.3680 |
0.1867 |
0.4628 |
0.5265 |
0.1369 |
0.5196 |
0.3411 |
0.2224 |
0.1597 |
0.8003 |
0.1702 |
0.2678 |
0.4386 |
0.3163 |
0.3499 |
0.6929 |
35000 |
10.3299 |
10.3354 |
0.1937 |
0.4614 |
0.5042 |
0.1430 |
0.5215 |
0.3416 |
0.2159 |
0.1488 |
0.8101 |
0.1764 |
0.2601 |
0.4525 |
0.3192 |
0.3499 |
0.7127 |
36000 |
10.3103 |
10.3054 |
0.1764 |
0.4555 |
0.5281 |
0.1577 |
0.5291 |
0.3338 |
0.2049 |
0.1483 |
0.7980 |
0.1660 |
0.2626 |
0.4153 |
0.3137 |
0.3453 |
0.7325 |
37000 |
10.2869 |
10.2670 |
0.1703 |
0.4488 |
0.5188 |
0.1560 |
0.5200 |
0.3370 |
0.2118 |
0.1513 |
0.8108 |
0.1671 |
0.2853 |
0.4057 |
0.3102 |
0.3456 |
0.7523 |
38000 |
10.2414 |
10.2453 |
0.1713 |
0.4556 |
0.5400 |
0.1568 |
0.5228 |
0.3359 |
0.2081 |
0.1624 |
0.8063 |
0.1636 |
0.2644 |
0.4413 |
0.3117 |
0.3492 |
0.7720 |
39000 |
10.231 |
10.2169 |
0.1595 |
0.4577 |
0.5599 |
0.1510 |
0.5195 |
0.3300 |
0.2070 |
0.1635 |
0.8145 |
0.1615 |
0.2846 |
0.4269 |
0.3236 |
0.3507 |
0.7918 |
40000 |
10.2115 |
10.1964 |
0.1734 |
0.4621 |
0.5414 |
0.1481 |
0.5300 |
0.3438 |
0.2072 |
0.1712 |
0.8062 |
0.1639 |
0.2815 |
0.4122 |
0.3000 |
0.3493 |
0.8116 |
41000 |
10.1947 |
10.1671 |
0.1712 |
0.4559 |
0.5450 |
0.1523 |
0.5145 |
0.3392 |
0.2198 |
0.1588 |
0.7927 |
0.1734 |
0.2826 |
0.4281 |
0.3014 |
0.3488 |
0.8314 |
42000 |
10.1666 |
10.1581 |
0.1648 |
0.4464 |
0.5555 |
0.1639 |
0.5014 |
0.3477 |
0.2099 |
0.1443 |
0.7988 |
0.1640 |
0.2784 |
0.4482 |
0.2983 |
0.3478 |
0.8512 |
43000 |
10.1528 |
10.1265 |
0.1789 |
0.4437 |
0.5328 |
0.1525 |
0.5266 |
0.3369 |
0.2016 |
0.1561 |
0.8097 |
0.1742 |
0.2863 |
0.4503 |
0.3008 |
0.3500 |
0.8710 |
44000 |
10.1054 |
10.1122 |
0.1716 |
0.4542 |
0.5310 |
0.1610 |
0.5359 |
0.3454 |
0.2022 |
0.1725 |
0.7948 |
0.1666 |
0.2840 |
0.4246 |
0.3149 |
0.3507 |
0.8908 |
45000 |
10.0878 |
10.0890 |
0.1729 |
0.4489 |
0.5533 |
0.1561 |
0.5401 |
0.3413 |
0.2135 |
0.1510 |
0.7989 |
0.1735 |
0.2950 |
0.4348 |
0.3202 |
0.3538 |
0.9106 |
46000 |
10.0875 |
10.0730 |
0.1776 |
0.4550 |
0.5499 |
0.1563 |
0.5313 |
0.3357 |
0.2084 |
0.1578 |
0.8058 |
0.1739 |
0.2976 |
0.4468 |
0.3176 |
0.3549 |
0.9304 |
47000 |
10.0615 |
10.0561 |
0.1816 |
0.4569 |
0.5310 |
0.1583 |
0.5279 |
0.3332 |
0.2058 |
0.1532 |
0.7976 |
0.1727 |
0.2813 |
0.4513 |
0.3146 |
0.3512 |
0.9502 |
48000 |
10.0378 |
10.0374 |
0.1916 |
0.4558 |
0.5242 |
0.1552 |
0.5368 |
0.3518 |
0.2050 |
0.1617 |
0.8065 |
0.1736 |
0.2898 |
0.4268 |
0.3109 |
0.3531 |
0.9700 |
49000 |
10.0393 |
10.0283 |
0.1809 |
0.4542 |
0.5319 |
0.1594 |
0.5240 |
0.3329 |
0.2070 |
0.1595 |
0.7998 |
0.1670 |
0.2885 |
0.4522 |
0.3204 |
0.3521 |
0.9898 |
50000 |
10.0035 |
10.0112 |
0.1721 |
0.4495 |
0.5200 |
0.1548 |
0.5294 |
0.3514 |
0.2124 |
0.1597 |
0.8063 |
0.1798 |
0.2785 |
0.4479 |
0.3322 |
0.3534 |
1.0096 |
51000 |
9.9575 |
10.0040 |
0.1737 |
0.4476 |
0.5422 |
0.1527 |
0.5345 |
0.3513 |
0.2076 |
0.1513 |
0.8071 |
0.1681 |
0.2715 |
0.4547 |
0.3149 |
0.3521 |
1.0294 |
52000 |
9.9083 |
9.9996 |
0.1668 |
0.4530 |
0.5315 |
0.1645 |
0.5212 |
0.3375 |
0.2168 |
0.1458 |
0.8046 |
0.1720 |
0.2746 |
0.4432 |
0.3234 |
0.3504 |
1.0492 |
53000 |
9.9229 |
9.9895 |
0.1777 |
0.4434 |
0.5348 |
0.1601 |
0.5158 |
0.3390 |
0.2130 |
0.1461 |
0.8014 |
0.1717 |
0.2808 |
0.4546 |
0.3161 |
0.3504 |
1.0690 |
54000 |
9.884 |
9.9758 |
0.1797 |
0.4507 |
0.5372 |
0.1685 |
0.5202 |
0.3398 |
0.2174 |
0.1739 |
0.7949 |
0.1744 |
0.2944 |
0.4334 |
0.3191 |
0.3541 |
1.0888 |
55000 |
9.9108 |
9.9650 |
0.1780 |
0.4458 |
0.5249 |
0.1510 |
0.5190 |
0.3492 |
0.2222 |
0.1639 |
0.7968 |
0.1895 |
0.2878 |
0.4251 |
0.3153 |
0.3514 |
1.1086 |
56000 |
9.9019 |
9.9556 |
0.1893 |
0.4465 |
0.5368 |
0.1514 |
0.5131 |
0.3384 |
0.2151 |
0.1609 |
0.8029 |
0.1886 |
0.2993 |
0.4280 |
0.3223 |
0.3533 |
1.1284 |
57000 |
9.8931 |
9.9392 |
0.1837 |
0.4409 |
0.5381 |
0.1632 |
0.5254 |
0.3332 |
0.2046 |
0.1470 |
0.8067 |
0.1915 |
0.2797 |
0.4167 |
0.3212 |
0.3501 |
1.1482 |
58000 |
9.8714 |
9.9229 |
0.1731 |
0.4440 |
0.5289 |
0.1477 |
0.5073 |
0.3257 |
0.2063 |
0.1631 |
0.8079 |
0.1844 |
0.3001 |
0.4391 |
0.3194 |
0.3498 |
1.1680 |
59000 |
9.885 |
9.9159 |
0.1756 |
0.4498 |
0.5274 |
0.1580 |
0.5156 |
0.3227 |
0.2101 |
0.1470 |
0.8042 |
0.1783 |
0.3026 |
0.4215 |
0.3237 |
0.3490 |
1.1878 |
60000 |
9.8824 |
9.9016 |
0.1794 |
0.4512 |
0.5261 |
0.1523 |
0.5093 |
0.3427 |
0.1964 |
0.1468 |
0.8029 |
0.1756 |
0.2898 |
0.4325 |
0.3173 |
0.3479 |
1.2076 |
61000 |
9.8846 |
9.8969 |
0.1768 |
0.4518 |
0.5452 |
0.1643 |
0.5087 |
0.3471 |
0.2004 |
0.1509 |
0.7959 |
0.1847 |
0.2954 |
0.4386 |
0.3099 |
0.3515 |
1.2274 |
62000 |
9.8534 |
9.8831 |
0.1848 |
0.4532 |
0.5422 |
0.1583 |
0.5177 |
0.3546 |
0.2087 |
0.1546 |
0.7985 |
0.1815 |
0.3024 |
0.4335 |
0.3285 |
0.3553 |
1.2472 |
63000 |
9.8494 |
9.8759 |
0.1776 |
0.4490 |
0.5305 |
0.1641 |
0.5138 |
0.3517 |
0.2043 |
0.1474 |
0.8040 |
0.1809 |
0.2947 |
0.4252 |
0.3183 |
0.3509 |
1.2670 |
64000 |
9.8514 |
9.8639 |
0.1820 |
0.4553 |
0.5386 |
0.1569 |
0.5055 |
0.3442 |
0.2116 |
0.1396 |
0.7949 |
0.1807 |
0.2820 |
0.4225 |
0.3154 |
0.3484 |
1.2867 |
65000 |
9.8341 |
9.8563 |
0.1772 |
0.4507 |
0.5300 |
0.1579 |
0.5072 |
0.3392 |
0.2067 |
0.1529 |
0.7961 |
0.1825 |
0.2874 |
0.4215 |
0.3195 |
0.3484 |
1.3065 |
66000 |
9.8417 |
9.8492 |
0.1784 |
0.4557 |
0.5251 |
0.1598 |
0.5011 |
0.3324 |
0.2183 |
0.1566 |
0.7928 |
0.1821 |
0.2873 |
0.4181 |
0.3153 |
0.3479 |
1.3263 |
67000 |
9.8081 |
9.8369 |
0.1831 |
0.4488 |
0.5360 |
0.1681 |
0.5046 |
0.3317 |
0.2064 |
0.1467 |
0.8013 |
0.1738 |
0.2887 |
0.4381 |
0.3043 |
0.3486 |
1.3461 |
68000 |
9.8001 |
9.8274 |
0.1842 |
0.4563 |
0.5387 |
0.1647 |
0.5080 |
0.3174 |
0.2089 |
0.1595 |
0.7964 |
0.1705 |
0.2918 |
0.4187 |
0.3054 |
0.3477 |
1.3659 |
69000 |
9.8059 |
9.8159 |
0.1827 |
0.4570 |
0.5528 |
0.1715 |
0.5207 |
0.3289 |
0.2046 |
0.1543 |
0.8094 |
0.1757 |
0.2839 |
0.4281 |
0.3025 |
0.3517 |
1.3857 |
70000 |
9.7848 |
9.8117 |
0.1656 |
0.4547 |
0.5381 |
0.1562 |
0.5091 |
0.3233 |
0.2127 |
0.1539 |
0.8000 |
0.1722 |
0.2885 |
0.4168 |
0.3091 |
0.3462 |
1.4055 |
71000 |
9.7847 |
9.8049 |
0.1786 |
0.4499 |
0.5495 |
0.1675 |
0.5194 |
0.3180 |
0.2133 |
0.1587 |
0.8025 |
0.1588 |
0.2895 |
0.4224 |
0.3056 |
0.3487 |
1.4253 |
72000 |
9.7587 |
9.7976 |
0.1706 |
0.4562 |
0.5425 |
0.1530 |
0.5283 |
0.3356 |
0.2125 |
0.1564 |
0.8055 |
0.1660 |
0.2939 |
0.4219 |
0.3005 |
0.3495 |
1.4451 |
73000 |
9.7652 |
9.7898 |
0.1787 |
0.4479 |
0.5406 |
0.1539 |
0.5281 |
0.3291 |
0.2088 |
0.1438 |
0.8058 |
0.1767 |
0.2938 |
0.4115 |
0.2960 |
0.3473 |
1.4649 |
74000 |
9.7507 |
9.7830 |
0.1746 |
0.4394 |
0.5426 |
0.1647 |
0.5201 |
0.3290 |
0.2131 |
0.1507 |
0.8039 |
0.1643 |
0.2856 |
0.4510 |
0.3030 |
0.3494 |
1.4847 |
75000 |
9.7412 |
9.7757 |
0.1701 |
0.4386 |
0.5244 |
0.1639 |
0.5140 |
0.3218 |
0.2111 |
0.1542 |
0.8086 |
0.1714 |
0.2765 |
0.4224 |
0.2973 |
0.3442 |
1.5045 |
76000 |
9.7412 |
9.7727 |
0.1823 |
0.4477 |
0.5337 |
0.1544 |
0.5117 |
0.3381 |
0.2074 |
0.1605 |
0.8079 |
0.1710 |
0.2820 |
0.4325 |
0.2996 |
0.3484 |
1.5243 |
77000 |
9.7475 |
9.7626 |
0.1743 |
0.4423 |
0.5343 |
0.1511 |
0.5142 |
0.3224 |
0.2124 |
0.1567 |
0.8076 |
0.1802 |
0.2946 |
0.4303 |
0.3044 |
0.3481 |
1.5441 |
78000 |
9.7512 |
9.7590 |
0.1737 |
0.4406 |
0.5323 |
0.1535 |
0.5102 |
0.3419 |
0.2099 |
0.1476 |
0.8058 |
0.1626 |
0.2877 |
0.4073 |
0.3015 |
0.3442 |
1.5639 |
79000 |
9.7406 |
9.7501 |
0.1735 |
0.4472 |
0.5189 |
0.1639 |
0.5148 |
0.3232 |
0.2065 |
0.1555 |
0.8015 |
0.1698 |
0.2826 |
0.4320 |
0.3047 |
0.3457 |
1.5837 |
80000 |
9.7409 |
9.7426 |
0.1799 |
0.4405 |
0.5225 |
0.1627 |
0.5158 |
0.3487 |
0.2051 |
0.1608 |
0.8079 |
0.1657 |
0.2857 |
0.4469 |
0.3014 |
0.3495 |
1.6035 |
81000 |
9.7125 |
9.7399 |
0.1781 |
0.4402 |
0.5230 |
0.1564 |
0.5153 |
0.3439 |
0.2167 |
0.1622 |
0.8070 |
0.1706 |
0.3040 |
0.4512 |
0.3071 |
0.3520 |
1.6233 |
82000 |
9.7164 |
9.7319 |
0.1806 |
0.4485 |
0.5317 |
0.1486 |
0.5220 |
0.3353 |
0.2087 |
0.1604 |
0.8033 |
0.1783 |
0.2899 |
0.4178 |
0.3025 |
0.3483 |
1.6431 |
83000 |
9.7203 |
9.7257 |
0.1766 |
0.4513 |
0.5120 |
0.1581 |
0.5108 |
0.3375 |
0.2084 |
0.1635 |
0.8085 |
0.1682 |
0.2904 |
0.4334 |
0.2932 |
0.3471 |
1.6629 |
84000 |
9.7035 |
9.7229 |
0.1759 |
0.4447 |
0.5391 |
0.1555 |
0.5104 |
0.3369 |
0.2067 |
0.1584 |
0.8036 |
0.1754 |
0.2943 |
0.4266 |
0.3032 |
0.3485 |
1.6827 |
85000 |
9.7277 |
9.7206 |
0.1757 |
0.4401 |
0.5229 |
0.1540 |
0.5188 |
0.3448 |
0.2070 |
0.1521 |
0.8078 |
0.1731 |
0.2967 |
0.4287 |
0.2984 |
0.3477 |
1.7025 |
86000 |
9.6992 |
9.7184 |
0.1849 |
0.4403 |
0.5276 |
0.1598 |
0.5196 |
0.3342 |
0.2110 |
0.1585 |
0.8119 |
0.1790 |
0.2887 |
0.4211 |
0.3067 |
0.3495 |
1.7223 |
87000 |
9.6789 |
9.7084 |
0.1744 |
0.4400 |
0.5367 |
0.1572 |
0.5068 |
0.3289 |
0.2088 |
0.1622 |
0.8087 |
0.1750 |
0.2886 |
0.4340 |
0.3095 |
0.3485 |
1.7421 |
88000 |
9.6939 |
9.7020 |
0.1736 |
0.4400 |
0.5423 |
0.1644 |
0.5125 |
0.3339 |
0.2064 |
0.1643 |
0.8052 |
0.1869 |
0.2921 |
0.4120 |
0.3091 |
0.3494 |
1.7619 |
89000 |
9.661 |
9.6965 |
0.1651 |
0.4404 |
0.5433 |
0.1625 |
0.5234 |
0.3362 |
0.2103 |
0.1682 |
0.8052 |
0.1797 |
0.2823 |
0.4291 |
0.3052 |
0.3501 |
1.7816 |
90000 |
9.6624 |
9.6919 |
0.1689 |
0.4438 |
0.5317 |
0.1496 |
0.5125 |
0.3421 |
0.2056 |
0.1643 |
0.8078 |
0.1750 |
0.3034 |
0.4187 |
0.3003 |
0.3480 |
1.8014 |
91000 |
9.666 |
9.6855 |
0.1719 |
0.4468 |
0.5395 |
0.1572 |
0.5188 |
0.3430 |
0.2032 |
0.1506 |
0.8065 |
0.1795 |
0.2888 |
0.4185 |
0.2940 |
0.3476 |
1.8212 |
92000 |
9.6715 |
9.6823 |
0.1703 |
0.4456 |
0.5311 |
0.1568 |
0.5193 |
0.3530 |
0.2046 |
0.1635 |
0.7988 |
0.1758 |
0.2951 |
0.4236 |
0.2994 |
0.3490 |
1.8410 |
93000 |
9.6597 |
9.6800 |
0.1703 |
0.4491 |
0.5255 |
0.1622 |
0.5194 |
0.3491 |
0.2137 |
0.1444 |
0.8062 |
0.1728 |
0.3083 |
0.4199 |
0.3070 |
0.3498 |
1.8608 |
94000 |
9.6594 |
9.6740 |
0.1668 |
0.4469 |
0.5233 |
0.1536 |
0.5194 |
0.3396 |
0.2077 |
0.1586 |
0.8095 |
0.1809 |
0.2895 |
0.4238 |
0.3000 |
0.3477 |
1.8806 |
95000 |
9.6565 |
9.6647 |
0.1738 |
0.4461 |
0.5312 |
0.1502 |
0.5392 |
0.3444 |
0.2074 |
0.1555 |
0.8063 |
0.1823 |
0.2979 |
0.4282 |
0.3023 |
0.3511 |
1.9004 |
96000 |
9.6476 |
9.6640 |
0.1759 |
0.4456 |
0.5433 |
0.1565 |
0.5318 |
0.3470 |
0.2149 |
0.1548 |
0.8047 |
0.1717 |
0.3024 |
0.4359 |
0.2953 |
0.3523 |
1.9202 |
97000 |
9.6588 |
9.6563 |
0.1815 |
0.4449 |
0.5431 |
0.1617 |
0.5267 |
0.3460 |
0.2061 |
0.1557 |
0.8068 |
0.1667 |
0.2997 |
0.4463 |
0.3066 |
0.3532 |
1.9400 |
98000 |
9.6232 |
9.6491 |
0.1769 |
0.4426 |
0.5411 |
0.1562 |
0.5255 |
0.3430 |
0.2074 |
0.1534 |
0.8108 |
0.1686 |
0.2991 |
0.4395 |
0.2915 |
0.3504 |
1.9598 |
99000 |
9.6412 |
9.6446 |
0.1722 |
0.4434 |
0.5368 |
0.1652 |
0.5236 |
0.3378 |
0.1998 |
0.1533 |
0.8043 |
0.1670 |
0.3053 |
0.4498 |
0.2899 |
0.3499 |
1.9796 |
100000 |
9.6418 |
9.6400 |
0.1740 |
0.4444 |
0.5379 |
0.1635 |
0.5284 |
0.3340 |
0.2038 |
0.1682 |
0.8013 |
0.1780 |
0.3077 |
0.4224 |
0.2877 |
0.3501 |
1.9994 |
101000 |
9.6363 |
9.6378 |
0.1784 |
0.4439 |
0.5349 |
0.1626 |
0.5273 |
0.3432 |
0.2168 |
0.1602 |
0.8028 |
0.1797 |
0.2987 |
0.4336 |
0.2999 |
0.3525 |
2.0192 |
102000 |
9.5424 |
9.6456 |
0.1817 |
0.4450 |
0.5436 |
0.1563 |
0.5333 |
0.3374 |
0.2124 |
0.1551 |
0.8045 |
0.1767 |
0.2880 |
0.4329 |
0.2923 |
0.3507 |
2.0390 |
103000 |
9.5632 |
9.6461 |
0.1818 |
0.4505 |
0.5405 |
0.1566 |
0.5251 |
0.3387 |
0.2047 |
0.1533 |
0.7995 |
0.1697 |
0.2860 |
0.4399 |
0.2936 |
0.3492 |
2.0588 |
104000 |
9.5526 |
9.6401 |
0.1775 |
0.4386 |
0.5245 |
0.1471 |
0.5212 |
0.3383 |
0.2110 |
0.1548 |
0.8061 |
0.1663 |
0.2945 |
0.4264 |
0.2995 |
0.3466 |
2.0786 |
105000 |
9.5694 |
9.6374 |
0.1915 |
0.4489 |
0.5283 |
0.1506 |
0.5276 |
0.3393 |
0.2016 |
0.1498 |
0.8045 |
0.1723 |
0.2938 |
0.4376 |
0.3007 |
0.3497 |
2.0984 |
106000 |
9.5772 |
9.6314 |
0.1728 |
0.4530 |
0.5356 |
0.1605 |
0.5278 |
0.3358 |
0.2061 |
0.1503 |
0.8050 |
0.1734 |
0.3016 |
0.4274 |
0.2991 |
0.3499 |
2.1182 |
107000 |
9.5735 |
9.6322 |
0.1711 |
0.4380 |
0.5450 |
0.1618 |
0.5333 |
0.3462 |
0.2026 |
0.1591 |
0.8057 |
0.1711 |
0.3005 |
0.4159 |
0.2984 |
0.3499 |
2.1380 |
108000 |
9.5764 |
9.6262 |
0.1738 |
0.4547 |
0.5394 |
0.1548 |
0.5330 |
0.3372 |
0.2003 |
0.1589 |
0.8026 |
0.1768 |
0.2914 |
0.4384 |
0.2877 |
0.3499 |
2.1578 |
109000 |
9.5918 |
9.6217 |
0.1699 |
0.4404 |
0.5272 |
0.1469 |
0.5248 |
0.3483 |
0.2020 |
0.1507 |
0.8006 |
0.1771 |
0.2851 |
0.4183 |
0.3009 |
0.3456 |
2.1776 |
110000 |
9.5565 |
9.6192 |
0.1700 |
0.4443 |
0.5291 |
0.1477 |
0.5296 |
0.3409 |
0.2072 |
0.1530 |
0.8042 |
0.1752 |
0.2823 |
0.4203 |
0.2976 |
0.3463 |
2.1974 |
111000 |
9.5725 |
9.6153 |
0.1733 |
0.4434 |
0.5258 |
0.1499 |
0.5215 |
0.3397 |
0.1976 |
0.1544 |
0.8031 |
0.1830 |
0.2749 |
0.4255 |
0.2939 |
0.3451 |
2.2172 |
112000 |
9.552 |
9.6102 |
0.1765 |
0.4440 |
0.5258 |
0.1539 |
0.5315 |
0.3397 |
0.1998 |
0.1561 |
0.8026 |
0.1833 |
0.2790 |
0.4262 |
0.2914 |
0.3469 |
2.2370 |
113000 |
9.5574 |
9.6062 |
0.1810 |
0.4425 |
0.5363 |
0.1573 |
0.5344 |
0.3341 |
0.2008 |
0.1549 |
0.8016 |
0.1767 |
0.2808 |
0.4411 |
0.2972 |
0.3491 |
2.2568 |
114000 |
9.5671 |
9.6021 |
0.1837 |
0.4423 |
0.5330 |
0.1547 |
0.5164 |
0.3357 |
0.2062 |
0.1572 |
0.7990 |
0.1733 |
0.2852 |
0.4280 |
0.2894 |
0.3465 |
2.2766 |
115000 |
9.5393 |
9.6005 |
0.1857 |
0.4413 |
0.5339 |
0.1639 |
0.5091 |
0.3312 |
0.2057 |
0.1547 |
0.8018 |
0.1820 |
0.2761 |
0.4236 |
0.2909 |
0.3462 |
2.2963 |
116000 |
9.5581 |
9.5972 |
0.1807 |
0.4443 |
0.5454 |
0.1488 |
0.5168 |
0.3191 |
0.2154 |
0.1558 |
0.8021 |
0.1770 |
0.2949 |
0.4140 |
0.2945 |
0.3468 |
2.3161 |
117000 |
9.5702 |
9.5921 |
0.1804 |
0.4424 |
0.5471 |
0.1499 |
0.5147 |
0.3227 |
0.2109 |
0.1461 |
0.8018 |
0.1783 |
0.3053 |
0.4120 |
0.2889 |
0.3462 |
2.3359 |
118000 |
9.5395 |
9.5915 |
0.1756 |
0.4371 |
0.5301 |
0.1582 |
0.5210 |
0.3224 |
0.2090 |
0.1507 |
0.7967 |
0.1780 |
0.2988 |
0.4034 |
0.2933 |
0.3442 |
2.3557 |
119000 |
9.5434 |
9.5855 |
0.1735 |
0.4458 |
0.5441 |
0.1566 |
0.5253 |
0.3281 |
0.2098 |
0.1517 |
0.7965 |
0.1736 |
0.3016 |
0.4166 |
0.2859 |
0.3468 |
2.3755 |
120000 |
9.5444 |
9.5812 |
0.1709 |
0.4490 |
0.5432 |
0.1534 |
0.5174 |
0.3308 |
0.2043 |
0.1503 |
0.7965 |
0.1748 |
0.2895 |
0.4206 |
0.2802 |
0.3447 |
2.3953 |
121000 |
9.5562 |
9.5739 |
0.1779 |
0.4413 |
0.5380 |
0.1467 |
0.5184 |
0.3371 |
0.2057 |
0.1511 |
0.7974 |
0.1821 |
0.2815 |
0.4202 |
0.2856 |
0.3448 |
2.4151 |
122000 |
9.5334 |
9.5738 |
0.1802 |
0.4385 |
0.5357 |
0.1537 |
0.5149 |
0.3361 |
0.2151 |
0.1503 |
0.7975 |
0.1836 |
0.3001 |
0.4133 |
0.2822 |
0.3463 |
2.4349 |
123000 |
9.5202 |
9.5696 |
0.1697 |
0.4451 |
0.5411 |
0.1493 |
0.5216 |
0.3337 |
0.2116 |
0.1488 |
0.7965 |
0.1804 |
0.2903 |
0.4231 |
0.2908 |
0.3463 |
2.4547 |
124000 |
9.5296 |
9.5683 |
0.1711 |
0.4556 |
0.5306 |
0.1466 |
0.5181 |
0.3235 |
0.2141 |
0.1570 |
0.7965 |
0.1785 |
0.2984 |
0.4201 |
0.2929 |
0.3464 |
2.4745 |
125000 |
9.5399 |
9.5660 |
0.1791 |
0.4487 |
0.5275 |
0.1417 |
0.5264 |
0.3305 |
0.2209 |
0.1596 |
0.7977 |
0.1770 |
0.3013 |
0.4271 |
0.2833 |
0.3478 |
2.4943 |
126000 |
9.5583 |
9.5641 |
0.1708 |
0.4400 |
0.5341 |
0.1489 |
0.5198 |
0.3291 |
0.2107 |
0.1515 |
0.8003 |
0.1784 |
0.3049 |
0.4282 |
0.2871 |
0.3465 |
2.5141 |
127000 |
9.5252 |
9.5618 |
0.1756 |
0.4424 |
0.5408 |
0.1577 |
0.5209 |
0.3244 |
0.2130 |
0.1526 |
0.8015 |
0.1785 |
0.3094 |
0.4217 |
0.2849 |
0.3480 |
2.5339 |
128000 |
9.5122 |
9.5577 |
0.1748 |
0.4405 |
0.5383 |
0.1501 |
0.5188 |
0.3305 |
0.2102 |
0.1446 |
0.8041 |
0.1804 |
0.3074 |
0.4184 |
0.2943 |
0.3471 |
2.5537 |
129000 |
9.5237 |
9.5523 |
0.1754 |
0.4396 |
0.5369 |
0.1509 |
0.5269 |
0.3246 |
0.2117 |
0.1458 |
0.8026 |
0.1799 |
0.2997 |
0.4153 |
0.2947 |
0.3465 |
2.5735 |
130000 |
9.5257 |
9.5510 |
0.1705 |
0.4365 |
0.5369 |
0.1560 |
0.5302 |
0.3310 |
0.2087 |
0.1559 |
0.8015 |
0.1832 |
0.3070 |
0.4243 |
0.2955 |
0.3490 |
2.5933 |
131000 |
9.5407 |
9.5489 |
0.1704 |
0.4386 |
0.5350 |
0.1495 |
0.5323 |
0.3302 |
0.2123 |
0.1565 |
0.8012 |
0.1846 |
0.3027 |
0.4278 |
0.2997 |
0.3493 |
2.6131 |
132000 |
9.5339 |
9.5449 |
0.1693 |
0.4445 |
0.5416 |
0.1621 |
0.5170 |
0.3186 |
0.2105 |
0.1551 |
0.8018 |
0.1799 |
0.2952 |
0.4263 |
0.2969 |
0.3476 |
2.6329 |
133000 |
9.5095 |
9.5399 |
0.1697 |
0.4392 |
0.5416 |
0.1545 |
0.5140 |
0.3332 |
0.2090 |
0.1557 |
0.7995 |
0.1758 |
0.2920 |
0.4202 |
0.3030 |
0.3467 |
2.6527 |
134000 |
9.5319 |
9.5397 |
0.1743 |
0.4370 |
0.5427 |
0.1635 |
0.5250 |
0.3231 |
0.2076 |
0.1504 |
0.8012 |
0.1767 |
0.2909 |
0.4205 |
0.2920 |
0.3465 |
2.6725 |
135000 |
9.5018 |
9.5376 |
0.1698 |
0.4358 |
0.5316 |
0.1600 |
0.5249 |
0.3199 |
0.2058 |
0.1496 |
0.8012 |
0.1859 |
0.2939 |
0.4150 |
0.2945 |
0.3452 |
2.6923 |
136000 |
9.4906 |
9.5338 |
0.1762 |
0.4350 |
0.5308 |
0.1525 |
0.5226 |
0.3315 |
0.2108 |
0.1667 |
0.7995 |
0.1809 |
0.2830 |
0.4364 |
0.2952 |
0.3478 |
2.7121 |
137000 |
9.4951 |
9.5307 |
0.1745 |
0.4356 |
0.5385 |
0.1482 |
0.5183 |
0.3339 |
0.2103 |
0.1658 |
0.7995 |
0.1786 |
0.2899 |
0.4205 |
0.2943 |
0.3468 |
2.7319 |
138000 |
9.498 |
9.5292 |
0.1710 |
0.4353 |
0.5363 |
0.1504 |
0.5278 |
0.3377 |
0.2045 |
0.1586 |
0.7981 |
0.1885 |
0.2882 |
0.4145 |
0.2996 |
0.3470 |
2.7517 |
139000 |
9.5133 |
9.5262 |
0.1705 |
0.4336 |
0.5352 |
0.1514 |
0.5250 |
0.3233 |
0.2091 |
0.1604 |
0.8016 |
0.1854 |
0.2837 |
0.4188 |
0.2966 |
0.3457 |
2.7715 |
140000 |
9.4934 |
9.5222 |
0.1740 |
0.4378 |
0.5279 |
0.1539 |
0.5199 |
0.3302 |
0.2128 |
0.1554 |
0.7989 |
0.1799 |
0.2885 |
0.4224 |
0.3013 |
0.3464 |
2.7913 |
141000 |
9.4993 |
9.5188 |
0.1754 |
0.4353 |
0.5209 |
0.1504 |
0.5287 |
0.3284 |
0.2128 |
0.1503 |
0.7972 |
0.1853 |
0.2851 |
0.4239 |
0.2956 |
0.3453 |
2.8110 |
142000 |
9.498 |
9.5188 |
0.1763 |
0.4313 |
0.5328 |
0.1514 |
0.5203 |
0.3260 |
0.2068 |
0.1603 |
0.8016 |
0.1812 |
0.3041 |
0.4303 |
0.2892 |
0.3470 |
2.8308 |
143000 |
9.477 |
9.5174 |
0.1749 |
0.4281 |
0.5437 |
0.1515 |
0.5096 |
0.3183 |
0.2025 |
0.1524 |
0.7963 |
0.1897 |
0.2938 |
0.4315 |
0.2872 |
0.3446 |
2.8506 |
144000 |
9.483 |
9.5132 |
0.1768 |
0.4279 |
0.5361 |
0.1424 |
0.5181 |
0.3307 |
0.2046 |
0.1506 |
0.7969 |
0.1834 |
0.2965 |
0.4301 |
0.2885 |
0.3448 |
2.8704 |
145000 |
9.478 |
9.5092 |
0.1870 |
0.4299 |
0.5334 |
0.1450 |
0.5128 |
0.3299 |
0.2035 |
0.1488 |
0.7981 |
0.1792 |
0.3008 |
0.4289 |
0.2886 |
0.3451 |
2.8902 |
146000 |
9.4904 |
9.5053 |
0.1759 |
0.4279 |
0.5370 |
0.1438 |
0.5218 |
0.3271 |
0.2077 |
0.1537 |
0.7995 |
0.1847 |
0.2832 |
0.4269 |
0.2891 |
0.3445 |
2.9100 |
147000 |
9.4787 |
9.5035 |
0.1744 |
0.4281 |
0.5437 |
0.1597 |
0.5050 |
0.3377 |
0.2044 |
0.1499 |
0.8003 |
0.1898 |
0.2915 |
0.4273 |
0.2928 |
0.3465 |
2.9298 |
148000 |
9.4861 |
9.5041 |
0.1801 |
0.4294 |
0.5303 |
0.1586 |
0.5067 |
0.3178 |
0.2086 |
0.1492 |
0.8030 |
0.1803 |
0.2837 |
0.4160 |
0.2972 |
0.3431 |
2.9496 |
149000 |
9.4736 |
9.5001 |
0.1758 |
0.4249 |
0.5350 |
0.1515 |
0.5103 |
0.3258 |
0.2128 |
0.1463 |
0.7983 |
0.1785 |
0.2847 |
0.4281 |
0.2936 |
0.3435 |
2.9694 |
150000 |
9.4847 |
9.4980 |
0.1742 |
0.4305 |
0.5362 |
0.1524 |
0.5215 |
0.3250 |
0.2097 |
0.1485 |
0.8016 |
0.1768 |
0.2911 |
0.4228 |
0.2946 |
0.3450 |
2.9892 |
151000 |
9.4756 |
9.4948 |
0.1694 |
0.4270 |
0.5333 |
0.1575 |
0.5128 |
0.3191 |
0.2116 |
0.1445 |
0.8015 |
0.1736 |
0.2908 |
0.4215 |
0.2889 |
0.3424 |
3.0090 |
152000 |
9.4206 |
9.4949 |
0.1751 |
0.4243 |
0.5332 |
0.1432 |
0.5094 |
0.3172 |
0.2100 |
0.1442 |
0.7981 |
0.1763 |
0.2852 |
0.4310 |
0.2880 |
0.3412 |
3.0288 |
153000 |
9.3728 |
9.4973 |
0.1746 |
0.4330 |
0.5332 |
0.1447 |
0.5212 |
0.3211 |
0.2142 |
0.1493 |
0.7968 |
0.1803 |
0.2964 |
0.4287 |
0.2886 |
0.3448 |
3.0486 |
154000 |
9.3962 |
9.5003 |
0.1815 |
0.4325 |
0.5341 |
0.1456 |
0.5162 |
0.3300 |
0.2175 |
0.1431 |
0.7971 |
0.1806 |
0.3010 |
0.4328 |
0.2892 |
0.3462 |
3.0684 |
155000 |
9.3975 |
9.4988 |
0.1784 |
0.4276 |
0.5391 |
0.1478 |
0.5187 |
0.3271 |
0.2212 |
0.1457 |
0.7987 |
0.1832 |
0.3011 |
0.4305 |
0.2866 |
0.3466 |
3.0882 |
156000 |
9.411 |
9.4975 |
0.1728 |
0.4266 |
0.5301 |
0.1505 |
0.5208 |
0.3275 |
0.2191 |
0.1461 |
0.7994 |
0.1829 |
0.3012 |
0.4289 |
0.2916 |
0.3460 |
3.1080 |
157000 |
9.3958 |
9.4955 |
0.1796 |
0.4283 |
0.5375 |
0.1498 |
0.5186 |
0.3409 |
0.2209 |
0.1503 |
0.7985 |
0.1816 |
0.3024 |
0.4372 |
0.2875 |
0.3487 |
3.1278 |
158000 |
9.4203 |
9.4925 |
0.1699 |
0.4338 |
0.5324 |
0.1454 |
0.5078 |
0.3324 |
0.2152 |
0.1480 |
0.7990 |
0.1780 |
0.2957 |
0.4364 |
0.2849 |
0.3445 |
3.1476 |
159000 |
9.416 |
9.4913 |
0.1751 |
0.4325 |
0.5301 |
0.1498 |
0.5152 |
0.3270 |
0.2179 |
0.1491 |
0.7964 |
0.1782 |
0.3020 |
0.4285 |
0.2878 |
0.3454 |
3.1674 |
160000 |
9.4133 |
9.4867 |
0.1757 |
0.4320 |
0.5334 |
0.1528 |
0.5177 |
0.3264 |
0.2153 |
0.1443 |
0.7896 |
0.1784 |
0.2946 |
0.4276 |
0.2933 |
0.3447 |
3.1872 |
161000 |
9.4188 |
9.4860 |
0.1780 |
0.4300 |
0.5357 |
0.1486 |
0.5096 |
0.3295 |
0.2221 |
0.1479 |
0.7915 |
0.1780 |
0.2941 |
0.4224 |
0.2920 |
0.3446 |
3.2070 |
162000 |
9.4297 |
9.4831 |
0.1826 |
0.4291 |
0.5338 |
0.1520 |
0.5032 |
0.3359 |
0.2204 |
0.1488 |
0.7951 |
0.1759 |
0.2946 |
0.4272 |
0.2887 |
0.3452 |
3.2268 |
163000 |
9.4151 |
9.4808 |
0.1779 |
0.4341 |
0.5256 |
0.1517 |
0.5141 |
0.3407 |
0.2200 |
0.1460 |
0.7973 |
0.1854 |
0.2971 |
0.4191 |
0.2903 |
0.3461 |
3.2466 |
164000 |
9.4185 |
9.4781 |
0.1748 |
0.4358 |
0.5368 |
0.1409 |
0.5137 |
0.3376 |
0.2139 |
0.1414 |
0.7974 |
0.1759 |
0.3024 |
0.4214 |
0.2890 |
0.3447 |
3.2664 |
165000 |
9.4227 |
9.4763 |
0.1771 |
0.4319 |
0.5236 |
0.1389 |
0.5143 |
0.3389 |
0.2091 |
0.1515 |
0.7960 |
0.1800 |
0.2955 |
0.4286 |
0.2896 |
0.3442 |
3.2862 |
166000 |
9.4049 |
9.4711 |
0.1804 |
0.4312 |
0.5264 |
0.1449 |
0.5098 |
0.3393 |
0.2083 |
0.1505 |
0.7963 |
0.1811 |
0.2918 |
0.4278 |
0.2897 |
0.3444 |
3.3059 |
167000 |
9.4249 |
9.4675 |
0.1788 |
0.4297 |
0.5298 |
0.1395 |
0.5121 |
0.3463 |
0.2096 |
0.1455 |
0.7975 |
0.1810 |
0.3020 |
0.4351 |
0.2882 |
0.3458 |
3.3257 |
168000 |
9.4047 |
9.4667 |
0.1660 |
0.4296 |
0.5296 |
0.1427 |
0.5152 |
0.3488 |
0.2093 |
0.1458 |
0.7975 |
0.1830 |
0.3008 |
0.4352 |
0.2869 |
0.3454 |
3.3455 |
169000 |
9.4124 |
9.4663 |
0.1661 |
0.4260 |
0.5325 |
0.1439 |
0.5171 |
0.3550 |
0.2122 |
0.1444 |
0.7975 |
0.1833 |
0.2994 |
0.4352 |
0.2891 |
0.3463 |
3.3653 |
170000 |
9.416 |
9.4636 |
0.1729 |
0.4248 |
0.5424 |
0.1578 |
0.5146 |
0.3521 |
0.2078 |
0.1463 |
0.7975 |
0.1783 |
0.3047 |
0.4292 |
0.2883 |
0.3474 |
3.3851 |
171000 |
9.4139 |
9.4593 |
0.1732 |
0.4275 |
0.5390 |
0.1517 |
0.5233 |
0.3433 |
0.2079 |
0.1477 |
0.7975 |
0.1750 |
0.3052 |
0.4285 |
0.2865 |
0.3466 |
3.4049 |
172000 |
9.3927 |
9.4585 |
0.1771 |
0.4279 |
0.5339 |
0.1522 |
0.5226 |
0.3456 |
0.2095 |
0.1468 |
0.7981 |
0.1791 |
0.3029 |
0.4300 |
0.2851 |
0.3470 |
3.4247 |
173000 |
9.4008 |
9.4560 |
0.1753 |
0.4289 |
0.5344 |
0.1606 |
0.5179 |
0.3410 |
0.2068 |
0.1467 |
0.7975 |
0.1796 |
0.2984 |
0.4294 |
0.2869 |
0.3464 |
3.4445 |
174000 |
9.403 |
9.4545 |
0.1730 |
0.4337 |
0.5372 |
0.1535 |
0.5230 |
0.3296 |
0.2030 |
0.1470 |
0.8010 |
0.1802 |
0.3080 |
0.4243 |
0.2879 |
0.3463 |
3.4643 |
175000 |
9.414 |
9.4498 |
0.1678 |
0.4330 |
0.5383 |
0.1588 |
0.5134 |
0.3348 |
0.2050 |
0.1472 |
0.7984 |
0.1794 |
0.2980 |
0.4165 |
0.2876 |
0.3445 |
3.4841 |
176000 |
9.4006 |
9.4484 |
0.1726 |
0.4367 |
0.5311 |
0.1571 |
0.5167 |
0.3191 |
0.2092 |
0.1517 |
0.7975 |
0.1840 |
0.2968 |
0.4212 |
0.2904 |
0.3449 |
3.5039 |
177000 |
9.4065 |
9.4452 |
0.1722 |
0.4347 |
0.5311 |
0.1524 |
0.5210 |
0.3324 |
0.2061 |
0.1525 |
0.7964 |
0.1810 |
0.3090 |
0.4310 |
0.2895 |
0.3469 |
3.5237 |
178000 |
9.4145 |
9.4411 |
0.1763 |
0.4360 |
0.5279 |
0.1571 |
0.5112 |
0.3257 |
0.2094 |
0.1505 |
0.7969 |
0.1768 |
0.2963 |
0.4288 |
0.2883 |
0.3447 |
3.5435 |
179000 |
9.4052 |
9.4404 |
0.1757 |
0.4367 |
0.5292 |
0.1549 |
0.5200 |
0.3348 |
0.2107 |
0.1527 |
0.7961 |
0.1808 |
0.2873 |
0.4250 |
0.2871 |
0.3455 |
3.5633 |
180000 |
9.412 |
9.4392 |
0.1723 |
0.4337 |
0.5354 |
0.1531 |
0.5181 |
0.3348 |
0.2092 |
0.1480 |
0.7967 |
0.1786 |
0.2877 |
0.4227 |
0.2907 |
0.3447 |
3.5831 |
181000 |
9.4105 |
9.4377 |
0.1747 |
0.4308 |
0.5334 |
0.1572 |
0.5188 |
0.3348 |
0.2101 |
0.1480 |
0.7967 |
0.1753 |
0.2894 |
0.4294 |
0.2895 |
0.3452 |
3.6029 |
182000 |
9.3904 |
9.4336 |
0.1703 |
0.4358 |
0.5354 |
0.1524 |
0.5229 |
0.3283 |
0.2227 |
0.1488 |
0.7999 |
0.1768 |
0.2954 |
0.4290 |
0.2889 |
0.3467 |
3.6227 |
183000 |
9.3784 |
9.4310 |
0.1743 |
0.4311 |
0.5379 |
0.1437 |
0.5182 |
0.3264 |
0.2198 |
0.1490 |
0.7999 |
0.1758 |
0.3012 |
0.4294 |
0.2889 |
0.3458 |
3.6425 |
184000 |
9.3762 |
9.4288 |
0.1713 |
0.4345 |
0.5362 |
0.1506 |
0.5136 |
0.3186 |
0.2107 |
0.1491 |
0.7973 |
0.1751 |
0.3018 |
0.4282 |
0.2898 |
0.3444 |
3.6623 |
185000 |
9.3958 |
9.4268 |
0.1757 |
0.4290 |
0.5420 |
0.1503 |
0.5158 |
0.3175 |
0.2067 |
0.1465 |
0.7938 |
0.1772 |
0.3020 |
0.4219 |
0.2921 |
0.3439 |
3.6821 |
186000 |
9.4056 |
9.4261 |
0.1790 |
0.4308 |
0.5388 |
0.1454 |
0.5162 |
0.3200 |
0.2096 |
0.1400 |
0.7949 |
0.1699 |
0.2988 |
0.4235 |
0.2867 |
0.3426 |
3.7019 |
187000 |
9.3616 |
9.4244 |
0.1797 |
0.4279 |
0.5428 |
0.1499 |
0.5173 |
0.3252 |
0.2150 |
0.1405 |
0.7975 |
0.1758 |
0.2900 |
0.4287 |
0.2862 |
0.3443 |
3.7217 |
188000 |
9.3864 |
9.4239 |
0.1794 |
0.4288 |
0.5447 |
0.1474 |
0.5225 |
0.3273 |
0.2210 |
0.1467 |
0.7975 |
0.1710 |
0.2966 |
0.4361 |
0.2804 |
0.3461 |
3.7415 |
189000 |
9.3842 |
9.4199 |
0.1765 |
0.4295 |
0.5306 |
0.1450 |
0.5176 |
0.3190 |
0.2218 |
0.1461 |
0.7961 |
0.1753 |
0.2959 |
0.4284 |
0.2843 |
0.3436 |
3.7613 |
190000 |
9.3888 |
9.4186 |
0.1770 |
0.4281 |
0.5369 |
0.1451 |
0.5140 |
0.3171 |
0.2173 |
0.1408 |
0.7953 |
0.1774 |
0.2887 |
0.4271 |
0.2833 |
0.3422 |
3.7811 |
191000 |
9.3769 |
9.4163 |
0.1777 |
0.4291 |
0.5417 |
0.1411 |
0.5150 |
0.3176 |
0.2103 |
0.1474 |
0.7959 |
0.1813 |
0.3013 |
0.4268 |
0.2757 |
0.3431 |
3.8009 |
192000 |
9.3643 |
9.4151 |
0.1773 |
0.4275 |
0.5396 |
0.1483 |
0.5170 |
0.3236 |
0.2100 |
0.1482 |
0.7959 |
0.1796 |
0.2993 |
0.4274 |
0.2766 |
0.3439 |
3.8206 |
193000 |
9.376 |
9.4128 |
0.1707 |
0.4300 |
0.5431 |
0.1422 |
0.5139 |
0.3277 |
0.2144 |
0.1472 |
0.7959 |
0.1823 |
0.2945 |
0.4283 |
0.2821 |
0.3440 |
3.8404 |
194000 |
9.396 |
9.4102 |
0.1727 |
0.4280 |
0.5418 |
0.1486 |
0.5137 |
0.3242 |
0.2071 |
0.1470 |
0.7959 |
0.1800 |
0.3001 |
0.4280 |
0.2843 |
0.3440 |
3.8602 |
195000 |
9.3662 |
9.4087 |
0.1741 |
0.4273 |
0.5371 |
0.1451 |
0.5116 |
0.3185 |
0.2101 |
0.1455 |
0.7959 |
0.1810 |
0.2940 |
0.4278 |
0.2840 |
0.3424 |
3.8800 |
196000 |
9.3727 |
9.4067 |
0.1704 |
0.4271 |
0.5393 |
0.1411 |
0.5099 |
0.3165 |
0.2047 |
0.1508 |
0.7967 |
0.1848 |
0.2946 |
0.4281 |
0.2838 |
0.3421 |
3.8998 |
197000 |
9.3805 |
9.4048 |
0.1716 |
0.4254 |
0.5416 |
0.1477 |
0.5192 |
0.3154 |
0.2098 |
0.1468 |
0.7953 |
0.1827 |
0.2920 |
0.4280 |
0.2874 |
0.3433 |
3.9196 |
198000 |
9.3799 |
9.4033 |
0.1687 |
0.4278 |
0.5393 |
0.1472 |
0.5146 |
0.3219 |
0.2083 |
0.1479 |
0.7961 |
0.1838 |
0.2918 |
0.4275 |
0.2860 |
0.3432 |
3.9394 |
199000 |
9.3702 |
9.3999 |
0.1681 |
0.4306 |
0.5401 |
0.1476 |
0.5098 |
0.3233 |
0.2112 |
0.1470 |
0.7975 |
0.1816 |
0.2926 |
0.4278 |
0.2814 |
0.3430 |
3.9592 |
200000 |
9.3646 |
9.3988 |
0.1701 |
0.4321 |
0.5401 |
0.1484 |
0.5107 |
0.3227 |
0.2135 |
0.1465 |
0.7980 |
0.1815 |
0.2930 |
0.4335 |
0.2858 |
0.3443 |
3.9790 |
201000 |
9.3559 |
9.3963 |
0.1696 |
0.4319 |
0.5418 |
0.1475 |
0.5135 |
0.3218 |
0.2117 |
0.1484 |
0.7975 |
0.1821 |
0.2856 |
0.4270 |
0.2853 |
0.3434 |
3.9988 |
202000 |
9.3566 |
9.3950 |
0.1743 |
0.4284 |
0.5432 |
0.1398 |
0.5092 |
0.3236 |
0.2113 |
0.1481 |
0.7980 |
0.1822 |
0.2784 |
0.4330 |
0.2827 |
0.3425 |
4.0186 |
203000 |
9.2801 |
9.3988 |
0.1709 |
0.4305 |
0.5418 |
0.1357 |
0.5223 |
0.3149 |
0.2129 |
0.1513 |
0.7975 |
0.1804 |
0.2873 |
0.4349 |
0.2820 |
0.3433 |
4.0384 |
204000 |
9.3024 |
9.3985 |
0.1745 |
0.4305 |
0.5418 |
0.1451 |
0.5189 |
0.3159 |
0.2081 |
0.1501 |
0.7975 |
0.1795 |
0.2869 |
0.4284 |
0.2828 |
0.3431 |
4.0582 |
205000 |
9.2953 |
9.3992 |
0.1743 |
0.4278 |
0.5418 |
0.1327 |
0.5162 |
0.3145 |
0.2110 |
0.1498 |
0.7975 |
0.1843 |
0.2818 |
0.4289 |
0.2825 |
0.3418 |
4.0780 |
206000 |
9.2922 |
9.4003 |
0.1731 |
0.4283 |
0.5416 |
0.1391 |
0.5180 |
0.3166 |
0.2110 |
0.1498 |
0.7972 |
0.1801 |
0.2796 |
0.4289 |
0.2830 |
0.3420 |
4.0978 |
207000 |
9.2851 |
9.3996 |
0.1740 |
0.4294 |
0.5416 |
0.1410 |
0.5147 |
0.3155 |
0.2134 |
0.1560 |
0.7975 |
0.1822 |
0.2880 |
0.4303 |
0.2820 |
0.3435 |
4.1176 |
208000 |
9.2913 |
9.3978 |
0.1740 |
0.4325 |
0.5416 |
0.1350 |
0.5131 |
0.3156 |
0.2129 |
0.1554 |
0.7975 |
0.1800 |
0.2876 |
0.4303 |
0.2856 |
0.3432 |
4.1374 |
209000 |
9.298 |
9.3966 |
0.1732 |
0.4274 |
0.5430 |
0.1387 |
0.5219 |
0.3139 |
0.2145 |
0.1507 |
0.7975 |
0.1779 |
0.2870 |
0.4275 |
0.2852 |
0.3430 |
4.1572 |
210000 |
9.2952 |
9.3943 |
0.1761 |
0.4262 |
0.5430 |
0.1433 |
0.5226 |
0.3231 |
0.2128 |
0.1561 |
0.7980 |
0.1806 |
0.2871 |
0.4282 |
0.2865 |
0.3449 |
4.1770 |
211000 |
9.3193 |
9.3924 |
0.1741 |
0.4269 |
0.5430 |
0.1331 |
0.5218 |
0.3256 |
0.2140 |
0.1503 |
0.7980 |
0.1786 |
0.2869 |
0.4284 |
0.2843 |
0.3435 |
4.1968 |
212000 |
9.297 |
9.3912 |
0.1744 |
0.4278 |
0.5428 |
0.1427 |
0.5217 |
0.3267 |
0.2138 |
0.1488 |
0.7980 |
0.1794 |
0.2806 |
0.4278 |
0.2831 |
0.3437 |
4.2166 |
213000 |
9.2984 |
9.3891 |
0.1797 |
0.4297 |
0.5430 |
0.1428 |
0.5236 |
0.3251 |
0.2128 |
0.1495 |
0.7980 |
0.1762 |
0.2791 |
0.4272 |
0.2859 |
0.3440 |
4.2364 |
214000 |
9.306 |
9.3881 |
0.1818 |
0.4275 |
0.5436 |
0.1457 |
0.5215 |
0.3244 |
0.2120 |
0.1498 |
0.7980 |
0.1812 |
0.2801 |
0.4278 |
0.2835 |
0.3444 |
4.2562 |
215000 |
9.3029 |
9.3861 |
0.1807 |
0.4290 |
0.5436 |
0.1413 |
0.5206 |
0.3244 |
0.2166 |
0.1481 |
0.7980 |
0.1829 |
0.2860 |
0.4275 |
0.2847 |
0.3449 |
4.2760 |
216000 |
9.2965 |
9.3848 |
0.1769 |
0.4280 |
0.5430 |
0.1471 |
0.5209 |
0.3251 |
0.2128 |
0.1555 |
0.7975 |
0.1794 |
0.2739 |
0.4270 |
0.2827 |
0.3438 |
4.2958 |
217000 |
9.3171 |
9.3828 |
0.1796 |
0.4285 |
0.5430 |
0.1438 |
0.5209 |
0.3231 |
0.2133 |
0.1490 |
0.7975 |
0.1819 |
0.2858 |
0.4270 |
0.2793 |
0.3440 |
4.3155 |
218000 |
9.3181 |
9.3824 |
0.1794 |
0.4262 |
0.5430 |
0.1496 |
0.5241 |
0.3243 |
0.2147 |
0.1481 |
0.7975 |
0.1794 |
0.2812 |
0.4275 |
0.2818 |
0.3444 |
4.3353 |
219000 |
9.2952 |
9.3794 |
0.1766 |
0.4265 |
0.5432 |
0.1412 |
0.5223 |
0.3243 |
0.2098 |
0.1475 |
0.7975 |
0.1777 |
0.2851 |
0.4328 |
0.2784 |
0.3433 |
4.3551 |
220000 |
9.32 |
9.3776 |
0.1739 |
0.4261 |
0.5432 |
0.1362 |
0.5258 |
0.3257 |
0.2106 |
0.1470 |
0.7980 |
0.1782 |
0.2815 |
0.4268 |
0.2787 |
0.3424 |
4.3749 |
221000 |
9.2999 |
9.3758 |
0.1767 |
0.4297 |
0.5432 |
0.1395 |
0.5175 |
0.3252 |
0.2126 |
0.1489 |
0.7980 |
0.1778 |
0.2865 |
0.4210 |
0.2801 |
0.3428 |
4.3947 |
222000 |
9.2954 |
9.3750 |
0.1783 |
0.4261 |
0.5432 |
0.1397 |
0.5220 |
0.3244 |
0.2116 |
0.1496 |
0.7980 |
0.1797 |
0.2929 |
0.4268 |
0.2786 |
0.3439 |
4.4145 |
223000 |
9.2944 |
9.3726 |
0.1795 |
0.4275 |
0.5432 |
0.1395 |
0.5172 |
0.3236 |
0.2130 |
0.1488 |
0.7971 |
0.1785 |
0.2921 |
0.4273 |
0.2796 |
0.3436 |
4.4343 |
224000 |
9.2851 |
9.3714 |
0.1794 |
0.4251 |
0.5432 |
0.1395 |
0.5172 |
0.3227 |
0.2136 |
0.1488 |
0.7975 |
0.1780 |
0.2921 |
0.4268 |
0.2788 |
0.3433 |
4.4541 |
225000 |
9.2856 |
9.3694 |
0.1761 |
0.4257 |
0.5432 |
0.1408 |
0.5218 |
0.3227 |
0.2116 |
0.1486 |
0.7971 |
0.1800 |
0.2935 |
0.4270 |
0.2794 |
0.3437 |
4.4739 |
226000 |
9.2967 |
9.3676 |
0.1792 |
0.4256 |
0.5418 |
0.1372 |
0.5200 |
0.3230 |
0.2100 |
0.1492 |
0.7967 |
0.1774 |
0.2939 |
0.4270 |
0.2803 |
0.3432 |
4.4937 |
227000 |
9.3019 |
9.3670 |
0.1798 |
0.4253 |
0.5430 |
0.1397 |
0.5200 |
0.3147 |
0.2063 |
0.1481 |
0.7967 |
0.1779 |
0.2946 |
0.4210 |
0.2792 |
0.3420 |
4.5135 |
228000 |
9.2938 |
9.3655 |
0.1795 |
0.4258 |
0.5423 |
0.1397 |
0.5192 |
0.3139 |
0.2094 |
0.1487 |
0.7967 |
0.1775 |
0.2943 |
0.4210 |
0.2780 |
0.3420 |
4.5333 |
229000 |
9.306 |
9.3643 |
0.1772 |
0.4251 |
0.5432 |
0.1393 |
0.5235 |
0.3148 |
0.2079 |
0.1487 |
0.7998 |
0.1798 |
0.2917 |
0.4216 |
0.2768 |
0.3423 |
4.5531 |
230000 |
9.3057 |
9.3631 |
0.1726 |
0.4250 |
0.5423 |
0.1393 |
0.5241 |
0.3148 |
0.2080 |
0.1483 |
0.7967 |
0.1795 |
0.2923 |
0.4216 |
0.2771 |
0.3417 |
4.5729 |
231000 |
9.3069 |
9.3615 |
0.1757 |
0.4240 |
0.5421 |
0.1500 |
0.5226 |
0.3171 |
0.2093 |
0.1481 |
0.7980 |
0.1783 |
0.2920 |
0.4216 |
0.2784 |
0.3429 |
4.5927 |
232000 |
9.3003 |
9.3604 |
0.1752 |
0.4255 |
0.5421 |
0.1498 |
0.5226 |
0.3185 |
0.2096 |
0.1478 |
0.7980 |
0.1801 |
0.2920 |
0.4216 |
0.2783 |
0.3432 |
4.6125 |
233000 |
9.3042 |
9.3594 |
0.1748 |
0.4243 |
0.5407 |
0.1453 |
0.5263 |
0.3185 |
0.2098 |
0.1472 |
0.7972 |
0.1796 |
0.2918 |
0.4216 |
0.2797 |
0.3428 |
4.6323 |
234000 |
9.3079 |
9.3573 |
0.1749 |
0.4256 |
0.5407 |
0.1428 |
0.5242 |
0.3185 |
0.2096 |
0.1536 |
0.7975 |
0.1793 |
0.2920 |
0.4273 |
0.2815 |
0.3437 |
4.6521 |
235000 |
9.284 |
9.3566 |
0.1729 |
0.4256 |
0.5407 |
0.1455 |
0.5253 |
0.3190 |
0.2079 |
0.1487 |
0.7975 |
0.1801 |
0.2936 |
0.4273 |
0.2812 |
0.3435 |
4.6719 |
236000 |
9.2916 |
9.3550 |
0.1755 |
0.4270 |
0.5416 |
0.1447 |
0.5216 |
0.3190 |
0.2081 |
0.1487 |
0.7975 |
0.1797 |
0.2869 |
0.4273 |
0.2823 |
0.3431 |
4.6917 |
237000 |
9.2871 |
9.3537 |
0.1733 |
0.4263 |
0.5421 |
0.1447 |
0.5246 |
0.3190 |
0.2097 |
0.1492 |
0.7980 |
0.1779 |
0.2917 |
0.4273 |
0.2786 |
0.3433 |
4.7115 |
238000 |
9.3105 |
9.3519 |
0.1729 |
0.4248 |
0.5430 |
0.1372 |
0.5194 |
0.3176 |
0.2096 |
0.1492 |
0.7980 |
0.1803 |
0.2917 |
0.4273 |
0.2799 |
0.3424 |
4.7313 |
239000 |
9.2935 |
9.3506 |
0.1731 |
0.4241 |
0.5421 |
0.1447 |
0.5194 |
0.3176 |
0.2078 |
0.1483 |
0.7975 |
0.1780 |
0.2903 |
0.4273 |
0.2797 |
0.3423 |
4.7511 |
240000 |
9.283 |
9.3497 |
0.1730 |
0.4257 |
0.5421 |
0.1388 |
0.5149 |
0.3176 |
0.2079 |
0.1486 |
0.7975 |
0.1779 |
0.2906 |
0.4273 |
0.2809 |
0.3417 |
4.7709 |
241000 |
9.2994 |
9.3486 |
0.1733 |
0.4257 |
0.5421 |
0.1388 |
0.5194 |
0.3176 |
0.2093 |
0.1486 |
0.7959 |
0.1798 |
0.2903 |
0.4216 |
0.2785 |
0.3416 |
4.7907 |
242000 |
9.2784 |
9.3475 |
0.1734 |
0.4245 |
0.5421 |
0.1433 |
0.5149 |
0.3176 |
0.2078 |
0.1486 |
0.7966 |
0.1780 |
0.2899 |
0.4200 |
0.2797 |
0.3413 |
4.8105 |
243000 |
9.2968 |
9.3466 |
0.1751 |
0.4245 |
0.5421 |
0.1388 |
0.5149 |
0.3176 |
0.2083 |
0.1486 |
0.7980 |
0.1779 |
0.2906 |
0.4273 |
0.2768 |
0.3416 |
4.8302 |
244000 |
9.2829 |
9.3455 |
0.1751 |
0.4245 |
0.5421 |
0.1446 |
0.5149 |
0.3176 |
0.2096 |
0.1486 |
0.7959 |
0.1778 |
0.2899 |
0.4273 |
0.2782 |
0.3420 |
4.8500 |
245000 |
9.2787 |
9.3449 |
0.1739 |
0.4245 |
0.5421 |
0.1446 |
0.5149 |
0.3176 |
0.2085 |
0.1486 |
0.7961 |
0.1779 |
0.2899 |
0.4273 |
0.2794 |
0.3420 |
4.8698 |
246000 |
9.2856 |
9.3439 |
0.1735 |
0.4247 |
0.5421 |
0.1491 |
0.5149 |
0.3176 |
0.2081 |
0.1483 |
0.7961 |
0.1779 |
0.2899 |
0.4216 |
0.2806 |
0.3419 |
4.8896 |
247000 |
9.2754 |
9.3433 |
0.1735 |
0.4247 |
0.5421 |
0.1490 |
0.5149 |
0.3176 |
0.2083 |
0.1483 |
0.7966 |
0.1779 |
0.2897 |
0.4216 |
0.2810 |
0.3419 |
4.9094 |
248000 |
9.2706 |
9.3427 |
0.1735 |
0.4247 |
0.5421 |
0.1491 |
0.5140 |
0.3176 |
0.2066 |
0.1487 |
0.7959 |
0.1774 |
0.2899 |
0.4216 |
0.2825 |
0.3418 |
4.9292 |
249000 |
9.3004 |
9.3422 |
0.1735 |
0.4247 |
0.5416 |
0.1491 |
0.5140 |
0.3176 |
0.2066 |
0.1487 |
0.7975 |
0.1774 |
0.2899 |
0.4216 |
0.2811 |
0.3418 |
4.9490 |
250000 |
9.2861 |
9.3417 |
0.1735 |
0.4247 |
0.5416 |
0.1491 |
0.5140 |
0.3176 |
0.2066 |
0.1487 |
0.7961 |
0.1774 |
0.2899 |
0.4216 |
0.2811 |
0.3417 |
4.9688 |
251000 |
9.2583 |
9.3412 |
0.1735 |
0.4247 |
0.5416 |
0.1491 |
0.5140 |
0.3176 |
0.2066 |
0.1487 |
0.7966 |
0.1755 |
0.2899 |
0.4216 |
0.2813 |
0.3416 |
4.9886 |
252000 |
9.2786 |
9.3411 |
0.1735 |
0.4247 |
0.5416 |
0.1491 |
0.5140 |
0.3176 |
0.2066 |
0.1483 |
0.7966 |
0.1755 |
0.2899 |
0.4216 |
0.2813 |
0.3416 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.3.1
- Transformers: 4.48.0
- PyTorch: 2.5.1+cu124
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}