codymd's picture
End of training
c94a774 verified
metadata
library_name: transformers
license: mit
base_model: xlnet/xlnet-base-cased
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: xlnet-base-cased-grammar-ner-generic
    results: []

xlnet-base-cased-grammar-ner-generic

This model is a fine-tuned version of xlnet/xlnet-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0907
  • Accuracy: 0.9907
  • F1 Macro: 0.9282
  • F1 Micro: 0.9282
  • Precision Macro: 0.9686
  • Precision Micro: 0.9686
  • Recall Macro: 0.8910
  • Recall Micro: 0.8910

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 24
  • eval_batch_size: 24
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 18

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Macro F1 Micro Precision Macro Precision Micro Recall Macro Recall Micro
0.2156 1.0 93 0.1656 0.9273 0.4389 0.4389 0.3873 0.3873 0.5064 0.5064
0.136 2.0 186 0.1196 0.9611 0.5396 0.5396 0.8129 0.8129 0.4038 0.4038
0.0885 3.0 279 0.0983 0.9673 0.7120 0.7120 0.7031 0.7031 0.7212 0.7212
0.0585 4.0 372 0.0908 0.9760 0.7898 0.7898 0.8381 0.8381 0.7468 0.7468
0.0406 5.0 465 0.0952 0.9723 0.7365 0.7365 0.8084 0.8084 0.6763 0.6763
0.0323 6.0 558 0.0755 0.9826 0.8529 0.8529 0.87 0.87 0.8365 0.8365
0.0228 7.0 651 0.0682 0.9858 0.8724 0.8724 0.8795 0.8795 0.8654 0.8654
0.0127 8.0 744 0.0822 0.9866 0.8799 0.8799 0.9319 0.9319 0.8333 0.8333
0.0107 9.0 837 0.0802 0.9879 0.9008 0.9008 0.9142 0.9142 0.8878 0.8878
0.007 10.0 930 0.0866 0.9878 0.9042 0.9042 0.9505 0.9505 0.8622 0.8622
0.0049 11.0 1023 0.0815 0.9884 0.9005 0.9005 0.9169 0.9169 0.8846 0.8846
0.0045 12.0 1116 0.0931 0.9886 0.9082 0.9082 0.9477 0.9477 0.8718 0.8718
0.003 13.0 1209 0.0926 0.9891 0.9195 0.9195 0.9648 0.9648 0.8782 0.8782
0.0015 14.0 1302 0.0840 0.9900 0.9208 0.9208 0.9490 0.9490 0.8942 0.8942
0.0009 15.0 1395 0.0895 0.9907 0.9280 0.9280 0.9719 0.9719 0.8878 0.8878
0.0007 16.0 1488 0.0898 0.9907 0.9282 0.9282 0.9686 0.9686 0.8910 0.8910
0.0005 17.0 1581 0.0903 0.9907 0.9282 0.9282 0.9686 0.9686 0.8910 0.8910
0.0006 18.0 1674 0.0907 0.9907 0.9282 0.9282 0.9686 0.9686 0.8910 0.8910

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.20.3