File size: 4,607 Bytes
1434b5b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
---
license: mit
language:
- ko
- en
- zh
base_model:
- Qwen/Qwen3-1.7B
pipeline_tag: summarization
tags:
- qwen3
- korean
- summary
- summarization
- ko
---
# qwen3-1.7B-ko-summary-finetuned-06-12
A fine-tuned Qwen3-1.7B model specialized for abstractive summarization of Korean documents, particularly academic papers. This model was trained on high-quality Korean paper summarization data and enhanced with emotional multi-turn conversation data to expand vocabulary and improve generation quality.
## Model Description
- **Architecture**: Qwen3-1.7B
- **Fine-tuning Task**: Abstractive summarization
- **Training Data**: Korean academic paper summaries (e.g., KoreaScience dataset) + Emotional multi-turn conversation data
## Key Improvements
1. **Resolved Token Repetition Issue**: Fixed meaningless token repetition problems from the previous colli98/qwen3-1.7B-ko-summary-finetuned model
2. **Structured Summary Format**: Improved unstructured summary format issues for better coherence
3. **Enhanced Vocabulary**: Added emotional multi-turn conversation training data to expand vocabulary range beyond academic papers
## Intended Use
- Summarizing long Korean documents—especially research papers—into clear, concise overviews.
- Integrating into research tools, educational platforms, or automated document-processing pipelines.
## Performance Evaluation
### ROUGE Score Comparison
| Metric | Previous Model | Current Model | Improvement |
| ------------------------ | -------------- | ------------- | ----------- |
| **ROUGE-1 Precision** | 0.357 | 0.388 | **+8.7%** |
| **ROUGE-1 Recall** | 0.189 | 0.174 | -7.9% |
| **ROUGE-1 F-measure** | 0.247 | 0.241 | -2.4% |
| **ROUGE-2 Precision** | 0.109 | 0.169 | **+55.0%** |
| **ROUGE-2 Recall** | 0.058 | 0.076 | **+31.1%** |
| **ROUGE-2 F-measure** | 0.075 | 0.104 | **+38.7%** |
| **ROUGE-L Precision** | 0.269 | 0.328 | **+21.9%** |
| **ROUGE-L Recall** | 0.142 | 0.147 | **+3.5%** |
| **ROUGE-L F-measure** | 0.186 | 0.203 | **+9.1%** |
| **ROUGE-Lsum Precision** | 0.316 | 0.319 | **+0.9%** |
| **ROUGE-Lsum Recall** | 0.168 | 0.171 | **+1.8%** |
| **ROUGE-Lsum F-measure** | 0.219 | 0.223 | **+1.8%** |
### Performance Analysis
**Positive Improvements:**
- **Overall Precision Enhancement**: Improved precision across all metrics, indicating higher quality generated content
- **Significant ROUGE-2 Improvement**: Major improvement in bigram-level metrics, suggesting more natural and coherent sentence structure generation
**Trade-offs:**
- **Partial Recall Decrease**: Slight decrease in recall, particularly in ROUGE-1, suggesting potential missed content from reference texts
- **Room for Further Improvement**: All metrics remain below 0.4, indicating need for additional performance enhancements
**Conclusion**: Fine-tuning improved **generation quality (precision)** while showing slight trade-offs in **completeness (recall)**. The significant ROUGE-2 improvement represents meaningful progress in model performance.

## Limitations & Risks
- May produce inaccuracies or hallucinated content.
- Not intended for generating verbatim legal/medical texts or for extractive quotation.
- Users should verify critical facts against original sources.
## Installation
```bash
pip install transformers safetensors
```
## Usage
```python
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("your-username/qwen3-1.7B-ko-summary-finetuned-06-12")
model = AutoModelForSeq2SeqLM.from_pretrained("your-username/qwen3-1.7B-ko-summary-finetuned-06-12")
text = "여기에 긴 한국어 논문 텍스트를 입력하세요..."
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="longest")
summary_ids = model.generate(
**inputs,
max_length=150,
num_beams=4,
early_stopping=True
)
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
print(summary)
```
## Files in This Repository
```bash
.
├── config.json
├── generation_config.json
├── model.safetensors
├── model.safetensors.index.json
├── tokenizer.json
├── tokenizer_config.json
├── special_tokens_map.json
├── vocab.json
├── merges.txt
└── added_tokens.json
```
|