camembert-base-literary-NER-v2
camembert-base-literary-NER-v2
is a french NER model trained on a dataset of 7 french novels by Maurel et al. (2025). Annotations guidelines are based on UniversalNER (Mayhew et al., 2024). The model supports PER
, LOC
, ORG
and MISC
entities. It was trained for 3 epochs with a learning rate of 1e-5.
Performance
We performed a 7-folds evaluation of the model (on the 7 novels from the dataset), and obtained the following results:
Novel | Micro F1 |
---|---|
Les Trois Mousquetaires | 71.15 |
Le Rouge et le Noir | 88.97 |
Eugénie Grandet | 88.56 |
Germinal | 89.94 |
Bel-Ami | 87.13 |
Notre-Dame de Paris | 75.70 |
Madame Bovary | 88.25 |
------------------------- | ---------- |
Global Micro F1 | 81.21 |
Class | Micro F1 | Precision | Recall |
---|---|---|---|
PERS | 83.51 | 81.89 | 85.20 |
LOC | 81.80 | 78.69 | 85.17 |
ORG | 55.74 | 42.39 | 81.34 |
OTHER | 34.08 | 25.15 | 52.86 |
Citation
If you use this model in your research, please cite:
@InProceedings{
authors = {Maurel, P. and Amalvy, A. and Labatut, V. and Alrahabi, M.},
title = {Du repérage à l’analyse : un modèle pour la reconnaissance d’entités nommées dans les textes littéraires en français},
booktitle = {Digital Humanities 2025 (to appear)},
year = {2025},
}
- Downloads last month
- 8
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for compnet-renard/camembert-base-literary-NER-v2
Base model
almanach/camembert-base