square_run_square_run_second_vote_full_pic_stratified_vgg2
This model is a fine-tuned version of timm/vgg19_bn.tv_in1k on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.0143
- F1 Macro: 0.5140
- F1 Micro: 0.6212
- F1 Weighted: 0.6038
- Precision Macro: 0.5210
- Precision Micro: 0.6212
- Precision Weighted: 0.6124
- Recall Macro: 0.5342
- Recall Micro: 0.6212
- Recall Weighted: 0.6212
- Accuracy: 0.6212
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | F1 Weighted | Precision Macro | Precision Micro | Precision Weighted | Recall Macro | Recall Micro | Recall Weighted | Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.7749 | 1.0 | 58 | 1.7397 | 0.1686 | 0.2727 | 0.2196 | 0.1887 | 0.2727 | 0.2269 | 0.1998 | 0.2727 | 0.2727 | 0.2727 |
1.5924 | 2.0 | 116 | 1.4291 | 0.3580 | 0.4621 | 0.4393 | 0.3810 | 0.4621 | 0.4825 | 0.3943 | 0.4621 | 0.4621 | 0.4621 |
1.4563 | 3.0 | 174 | 1.4826 | 0.3331 | 0.4697 | 0.4290 | 0.4364 | 0.4697 | 0.5308 | 0.3673 | 0.4697 | 0.4697 | 0.4697 |
1.2888 | 4.0 | 232 | 1.3110 | 0.4048 | 0.5530 | 0.4917 | 0.4449 | 0.5530 | 0.5385 | 0.4632 | 0.5530 | 0.5530 | 0.5530 |
1.2381 | 5.0 | 290 | 1.5292 | 0.3700 | 0.4318 | 0.4001 | 0.4623 | 0.4318 | 0.5131 | 0.4062 | 0.4318 | 0.4318 | 0.4318 |
0.8614 | 6.0 | 348 | 1.2528 | 0.4719 | 0.5833 | 0.5605 | 0.5388 | 0.5833 | 0.6189 | 0.4791 | 0.5833 | 0.5833 | 0.5833 |
0.6534 | 7.0 | 406 | 0.9814 | 0.5645 | 0.6515 | 0.6509 | 0.5754 | 0.6515 | 0.6658 | 0.5679 | 0.6515 | 0.6515 | 0.6515 |
0.8215 | 8.0 | 464 | 1.7659 | 0.4721 | 0.5833 | 0.5505 | 0.5161 | 0.5833 | 0.5741 | 0.4795 | 0.5833 | 0.5833 | 0.5833 |
1.0124 | 9.0 | 522 | 1.2417 | 0.5315 | 0.6364 | 0.6192 | 0.5533 | 0.6364 | 0.6354 | 0.5431 | 0.6364 | 0.6364 | 0.6364 |
0.4758 | 10.0 | 580 | 1.1776 | 0.5466 | 0.6364 | 0.6432 | 0.5769 | 0.6364 | 0.6841 | 0.5503 | 0.6364 | 0.6364 | 0.6364 |
0.5769 | 11.0 | 638 | 1.4177 | 0.5237 | 0.6288 | 0.6036 | 0.5515 | 0.6288 | 0.6187 | 0.5322 | 0.6288 | 0.6288 | 0.6288 |
0.4681 | 12.0 | 696 | 1.7591 | 0.4900 | 0.5909 | 0.5736 | 0.5555 | 0.5909 | 0.6291 | 0.4891 | 0.5909 | 0.5909 | 0.5909 |
0.9084 | 13.0 | 754 | 1.1417 | 0.6398 | 0.7045 | 0.7026 | 0.6509 | 0.7045 | 0.7058 | 0.6353 | 0.7045 | 0.7045 | 0.7045 |
0.0526 | 14.0 | 812 | 1.4903 | 0.5463 | 0.6667 | 0.6413 | 0.5855 | 0.6667 | 0.6794 | 0.5720 | 0.6667 | 0.6667 | 0.6667 |
0.6759 | 15.0 | 870 | 2.0678 | 0.5527 | 0.6061 | 0.5935 | 0.6105 | 0.6061 | 0.6249 | 0.5409 | 0.6061 | 0.6061 | 0.6061 |
0.2646 | 16.0 | 928 | 1.9471 | 0.6265 | 0.6818 | 0.6949 | 0.6584 | 0.6818 | 0.7281 | 0.6358 | 0.6818 | 0.6818 | 0.6818 |
0.0445 | 17.0 | 986 | 1.8514 | 0.6629 | 0.7045 | 0.7012 | 0.6802 | 0.7045 | 0.7136 | 0.6574 | 0.7045 | 0.7045 | 0.7045 |
0.1438 | 18.0 | 1044 | 2.6504 | 0.5446 | 0.6439 | 0.6340 | 0.5799 | 0.6439 | 0.6624 | 0.5482 | 0.6439 | 0.6439 | 0.6439 |
0.0011 | 19.0 | 1102 | 2.0833 | 0.6141 | 0.6667 | 0.6667 | 0.6241 | 0.6667 | 0.6826 | 0.6302 | 0.6667 | 0.6667 | 0.6667 |
0.0195 | 20.0 | 1160 | 2.5074 | 0.5801 | 0.6515 | 0.6551 | 0.6232 | 0.6515 | 0.7020 | 0.5867 | 0.6515 | 0.6515 | 0.6515 |
0.0089 | 21.0 | 1218 | 2.5588 | 0.6032 | 0.6742 | 0.6598 | 0.6426 | 0.6742 | 0.6746 | 0.6036 | 0.6742 | 0.6742 | 0.6742 |
0.0 | 22.0 | 1276 | 2.3691 | 0.6211 | 0.6818 | 0.6851 | 0.6357 | 0.6818 | 0.7047 | 0.6380 | 0.6818 | 0.6818 | 0.6818 |
0.0014 | 23.0 | 1334 | 2.7237 | 0.5942 | 0.6667 | 0.6600 | 0.6263 | 0.6667 | 0.6828 | 0.5952 | 0.6667 | 0.6667 | 0.6667 |
0.0004 | 24.0 | 1392 | 2.5083 | 0.6426 | 0.6970 | 0.6982 | 0.6515 | 0.6970 | 0.7163 | 0.6548 | 0.6970 | 0.6970 | 0.6970 |
0.0132 | 25.0 | 1450 | 2.7855 | 0.6647 | 0.7121 | 0.7015 | 0.6819 | 0.7121 | 0.7083 | 0.6632 | 0.7121 | 0.7121 | 0.7121 |
0.0022 | 26.0 | 1508 | 2.7880 | 0.6500 | 0.6970 | 0.6925 | 0.6636 | 0.6970 | 0.7010 | 0.6494 | 0.6970 | 0.6970 | 0.6970 |
0.0 | 27.0 | 1566 | 2.8432 | 0.6574 | 0.7121 | 0.7012 | 0.6749 | 0.7121 | 0.7126 | 0.6623 | 0.7121 | 0.7121 | 0.7121 |
0.0 | 28.0 | 1624 | 2.7713 | 0.6243 | 0.6970 | 0.6935 | 0.6376 | 0.6970 | 0.7017 | 0.6230 | 0.6970 | 0.6970 | 0.6970 |
0.0 | 29.0 | 1682 | 2.7503 | 0.6245 | 0.6970 | 0.6945 | 0.6395 | 0.6970 | 0.7043 | 0.6225 | 0.6970 | 0.6970 | 0.6970 |
0.0001 | 30.0 | 1740 | 2.8260 | 0.6361 | 0.7045 | 0.7012 | 0.6569 | 0.7045 | 0.7122 | 0.6318 | 0.7045 | 0.7045 | 0.7045 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.1
- Tokenizers 0.21.0
- Downloads last month
- 14
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for corranm/square_run_square_run_second_vote_full_pic_stratified_vgg2
Base model
timm/vgg19_bn.tv_in1k