square_run_square_run_second_vote_full_pic_stratified_vgg2

This model is a fine-tuned version of timm/vgg19_bn.tv_in1k on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0143
  • F1 Macro: 0.5140
  • F1 Micro: 0.6212
  • F1 Weighted: 0.6038
  • Precision Macro: 0.5210
  • Precision Micro: 0.6212
  • Precision Weighted: 0.6124
  • Recall Macro: 0.5342
  • Recall Micro: 0.6212
  • Recall Weighted: 0.6212
  • Accuracy: 0.6212

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Micro F1 Weighted Precision Macro Precision Micro Precision Weighted Recall Macro Recall Micro Recall Weighted Accuracy
1.7749 1.0 58 1.7397 0.1686 0.2727 0.2196 0.1887 0.2727 0.2269 0.1998 0.2727 0.2727 0.2727
1.5924 2.0 116 1.4291 0.3580 0.4621 0.4393 0.3810 0.4621 0.4825 0.3943 0.4621 0.4621 0.4621
1.4563 3.0 174 1.4826 0.3331 0.4697 0.4290 0.4364 0.4697 0.5308 0.3673 0.4697 0.4697 0.4697
1.2888 4.0 232 1.3110 0.4048 0.5530 0.4917 0.4449 0.5530 0.5385 0.4632 0.5530 0.5530 0.5530
1.2381 5.0 290 1.5292 0.3700 0.4318 0.4001 0.4623 0.4318 0.5131 0.4062 0.4318 0.4318 0.4318
0.8614 6.0 348 1.2528 0.4719 0.5833 0.5605 0.5388 0.5833 0.6189 0.4791 0.5833 0.5833 0.5833
0.6534 7.0 406 0.9814 0.5645 0.6515 0.6509 0.5754 0.6515 0.6658 0.5679 0.6515 0.6515 0.6515
0.8215 8.0 464 1.7659 0.4721 0.5833 0.5505 0.5161 0.5833 0.5741 0.4795 0.5833 0.5833 0.5833
1.0124 9.0 522 1.2417 0.5315 0.6364 0.6192 0.5533 0.6364 0.6354 0.5431 0.6364 0.6364 0.6364
0.4758 10.0 580 1.1776 0.5466 0.6364 0.6432 0.5769 0.6364 0.6841 0.5503 0.6364 0.6364 0.6364
0.5769 11.0 638 1.4177 0.5237 0.6288 0.6036 0.5515 0.6288 0.6187 0.5322 0.6288 0.6288 0.6288
0.4681 12.0 696 1.7591 0.4900 0.5909 0.5736 0.5555 0.5909 0.6291 0.4891 0.5909 0.5909 0.5909
0.9084 13.0 754 1.1417 0.6398 0.7045 0.7026 0.6509 0.7045 0.7058 0.6353 0.7045 0.7045 0.7045
0.0526 14.0 812 1.4903 0.5463 0.6667 0.6413 0.5855 0.6667 0.6794 0.5720 0.6667 0.6667 0.6667
0.6759 15.0 870 2.0678 0.5527 0.6061 0.5935 0.6105 0.6061 0.6249 0.5409 0.6061 0.6061 0.6061
0.2646 16.0 928 1.9471 0.6265 0.6818 0.6949 0.6584 0.6818 0.7281 0.6358 0.6818 0.6818 0.6818
0.0445 17.0 986 1.8514 0.6629 0.7045 0.7012 0.6802 0.7045 0.7136 0.6574 0.7045 0.7045 0.7045
0.1438 18.0 1044 2.6504 0.5446 0.6439 0.6340 0.5799 0.6439 0.6624 0.5482 0.6439 0.6439 0.6439
0.0011 19.0 1102 2.0833 0.6141 0.6667 0.6667 0.6241 0.6667 0.6826 0.6302 0.6667 0.6667 0.6667
0.0195 20.0 1160 2.5074 0.5801 0.6515 0.6551 0.6232 0.6515 0.7020 0.5867 0.6515 0.6515 0.6515
0.0089 21.0 1218 2.5588 0.6032 0.6742 0.6598 0.6426 0.6742 0.6746 0.6036 0.6742 0.6742 0.6742
0.0 22.0 1276 2.3691 0.6211 0.6818 0.6851 0.6357 0.6818 0.7047 0.6380 0.6818 0.6818 0.6818
0.0014 23.0 1334 2.7237 0.5942 0.6667 0.6600 0.6263 0.6667 0.6828 0.5952 0.6667 0.6667 0.6667
0.0004 24.0 1392 2.5083 0.6426 0.6970 0.6982 0.6515 0.6970 0.7163 0.6548 0.6970 0.6970 0.6970
0.0132 25.0 1450 2.7855 0.6647 0.7121 0.7015 0.6819 0.7121 0.7083 0.6632 0.7121 0.7121 0.7121
0.0022 26.0 1508 2.7880 0.6500 0.6970 0.6925 0.6636 0.6970 0.7010 0.6494 0.6970 0.6970 0.6970
0.0 27.0 1566 2.8432 0.6574 0.7121 0.7012 0.6749 0.7121 0.7126 0.6623 0.7121 0.7121 0.7121
0.0 28.0 1624 2.7713 0.6243 0.6970 0.6935 0.6376 0.6970 0.7017 0.6230 0.6970 0.6970 0.6970
0.0 29.0 1682 2.7503 0.6245 0.6970 0.6945 0.6395 0.6970 0.7043 0.6225 0.6970 0.6970 0.6970
0.0001 30.0 1740 2.8260 0.6361 0.7045 0.7012 0.6569 0.7045 0.7122 0.6318 0.7045 0.7045 0.7045

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.3.1
  • Tokenizers 0.21.0
Downloads last month
14
Safetensors
Model size
140M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for corranm/square_run_square_run_second_vote_full_pic_stratified_vgg2

Finetuned
(2)
this model