Edit model card

This is a uncenscored version of Phi-3.

Abliterated using the following the guide here: https://huggingface.co/blog/mlabonne/abliteration

Then it was fine tuned on orpo-dpo-mix-40k

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: cowWhySo/Phi-3-mini-4k-instruct-Friendly
trust_remote_code: true
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
chat_template: phi_3

load_in_8bit: false
load_in_4bit: true
strict: false
save_safetensors: true

rl: dpo
datasets:
  - path: mlabonne/orpo-dpo-mix-40k
    split: train
    type: chatml.intel

dataset_prepared_path:
val_set_size: 0.0
output_dir: ./out

sequence_len: 4096
sample_packing: false
pad_to_sequence_len: false

adapter: qlora
lora_model_dir:

lora_r: 64
lora_alpha: 32
lora_dropout: 0.1
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project: axolotl
wandb_entity:
wandb_watch:
wandb_name: phi3-mini-4k-instruct-Friendly
wandb_log_model:

gradient_accumulation_steps: 8
micro_batch_size: 4
num_epochs: 1
optimizer: paged_adamw_8bit
lr_scheduler: linear
learning_rate: 5e-6
train_on_inputs: false
group_by_length: false

bf16: auto

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: True
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 150
evals_per_epoch: 0
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed: deepspeed_configs/zero3.json
weight_decay: 0.01
max_grad_norm: 1.0
resize_token_embeddings_to_32x: true

Quants

GGUF: https://huggingface.co/cowWhySo/Phi-3-mini-4k-instruct-Friendly-gguf

Benchmarks

Model AGIEval GPT4All TruthfulQA Bigbench Average
Phi-3-mini-4k-instruct-Friendly 41 67.56 46.36 39.3 48.56

AGIEval

Task Version Metric Value Stderr
agieval_aqua_rat 0 acc 22.05 ± 2.61
acc_norm 22.05 ± 2.61
agieval_logiqa_en 0 acc 41.01 ± 1.93
acc_norm 41.32 ± 1.93
agieval_lsat_ar 0 acc 22.17 ± 2.75
acc_norm 22.17 ± 2.75
agieval_lsat_lr 0 acc 45.69 ± 2.21
acc_norm 45.88 ± 2.21
agieval_lsat_rc 0 acc 59.48 ± 3.00
acc_norm 56.51 ± 3.03
agieval_sat_en 0 acc 75.24 ± 3.01
acc_norm 70.39 ± 3.19
agieval_sat_en_without_passage 0 acc 39.81 ± 3.42
acc_norm 37.86 ± 3.39
agieval_sat_math 0 acc 33.64 ± 3.19
acc_norm 31.82 ± 3.15

Average: 41.0%

GPT4All

Task Version Metric Value Stderr
arc_challenge 0 acc 49.74 ± 1.46
acc_norm 50.43 ± 1.46
arc_easy 0 acc 76.68 ± 0.87
acc_norm 73.23 ± 0.91
boolq 1 acc 79.27 ± 0.71
hellaswag 0 acc 57.91 ± 0.49
acc_norm 77.13 ± 0.42
openbookqa 0 acc 35.00 ± 2.14
acc_norm 43.80 ± 2.22
piqa 0 acc 77.86 ± 0.97
acc_norm 79.54 ± 0.94
winogrande 0 acc 69.53 ± 1.29

Average: 67.56%

TruthfulQA

Task Version Metric Value Stderr
truthfulqa_mc 1 mc1 31.21 ± 1.62
mc2 46.36 ± 1.55

Average: 46.36%

Bigbench

Task Version Metric Value Stderr
bigbench_causal_judgement 0 multiple_choice_grade 54.74 ± 3.62
bigbench_date_understanding 0 multiple_choice_grade 66.67 ± 2.46
bigbench_disambiguation_qa 0 multiple_choice_grade 29.46 ± 2.84
bigbench_geometric_shapes 0 multiple_choice_grade 11.98 ± 1.72
exact_str_match 0.00 ± 0.00
bigbench_logical_deduction_five_objects 0 multiple_choice_grade 28.00 ± 2.01
bigbench_logical_deduction_seven_objects 0 multiple_choice_grade 17.14 ± 1.43
bigbench_logical_deduction_three_objects 0 multiple_choice_grade 45.67 ± 2.88
bigbench_movie_recommendation 0 multiple_choice_grade 24.40 ± 1.92
bigbench_navigate 0 multiple_choice_grade 53.70 ± 1.58
bigbench_reasoning_about_colored_objects 0 multiple_choice_grade 68.10 ± 1.04
bigbench_ruin_names 0 multiple_choice_grade 31.03 ± 2.19
bigbench_salient_translation_error_detection 0 multiple_choice_grade 15.93 ± 1.16
bigbench_snarks 0 multiple_choice_grade 77.35 ± 3.12
bigbench_sports_understanding 0 multiple_choice_grade 52.64 ± 1.59
bigbench_temporal_sequences 0 multiple_choice_grade 51.50 ± 1.58
bigbench_tracking_shuffled_objects_five_objects 0 multiple_choice_grade 19.52 ± 1.12
bigbench_tracking_shuffled_objects_seven_objects 0 multiple_choice_grade 13.89 ± 0.83
bigbench_tracking_shuffled_objects_three_objects 0 multiple_choice_grade 45.67 ± 2.88

Average: 39.3%

Average score: 48.56%

Training Summary

{
  "train/loss": 0.299,
  "train/grad_norm": 0.9337566701340533,
  "train/learning_rate": 0,
  "train/rewards/chosen": 0.08704188466072083,
  "train/rewards/rejected": -2.835820436477661,
  "train/rewards/accuracies": 0.84375,
  "train/rewards/margins": 2.9228620529174805,
  "train/logps/rejected": -509.9840393066406,
  "train/logps/chosen": -560.8234252929688,
  "train/logits/rejected": 1.6356163024902344,
  "train/logits/chosen": 1.7323706150054932,
  "train/epoch": 1.002169197396963,
  "train/global_step": 231,
  "_timestamp": 1717711643.3345022,
  "_runtime": 22808.557655334473,
  "_step": 231,
  "train_runtime": 22809.152,
  "train_samples_per_second": 1.944,
  "train_steps_per_second": 0.01,
  "total_flos": 0,
  "train_loss": 0.44557410065745895,
  "_wandb": {
    "runtime": 22810
  }
}
Downloads last month
10
Safetensors
Model size
3.82B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train cowWhySo/Phi-3-mini-4k-instruct-Friendly