mms-1b-all-bemgen-combined-m25f100-62-DAT-0.8
This model is a fine-tuned version of facebook/mms-1b-all on the BEMGEN - BEM dataset. It achieves the following results on the evaluation set:
- Loss: 0.2775
- Cer: 0.0767
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 4
- seed: 62
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 30.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Cer |
---|---|---|---|---|
8.2097 | 0.6711 | 100 | 2.8926 | 0.9993 |
2.5698 | 1.3423 | 200 | 0.5546 | 0.2055 |
1.4278 | 2.0134 | 300 | 0.3571 | 0.1014 |
1.2464 | 2.6846 | 400 | 0.3270 | 0.0947 |
1.2138 | 3.3557 | 500 | 0.3035 | 0.0865 |
1.1864 | 4.0268 | 600 | 0.2977 | 0.0842 |
1.1346 | 4.6980 | 700 | 0.2831 | 0.0781 |
1.2265 | 5.3691 | 800 | 0.2776 | 0.0768 |
1.2146 | 6.0403 | 900 | 0.2766 | 0.0755 |
1.1592 | 6.7114 | 1000 | 0.2715 | 0.0764 |
1.1769 | 7.3826 | 1100 | 0.2655 | 0.0742 |
1.1731 | 8.0537 | 1200 | 0.2720 | 0.0751 |
1.1623 | 8.7248 | 1300 | 0.2697 | 0.0750 |
1.1975 | 9.3960 | 1400 | 0.2682 | 0.0750 |
Framework versions
- Transformers 4.53.0.dev0
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.0
- Downloads last month
- 23
Model tree for csikasote/mms-1b-all-bemgen-combined-m25f100-62-DAT-0.8
Base model
facebook/mms-1b-all