mms-1b-all-bemgen-combined-m50f50-52-DAT-0.05-fusion
This model is a fine-tuned version of csikasote/mms-1b-all-bemgen-combined-m50f50-52-DAT-0.05-fusion on the BEMGEN - FUS dataset. It achieves the following results on the evaluation set:
- Loss: 0.2483
- Cer: 0.0692
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 4
- seed: 52
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- lr_scheduler_warmup_steps: 100
- num_epochs: 30.0
Training results
Training Loss | Epoch | Step | Validation Loss | Cer |
---|---|---|---|---|
0.5021 | 0.8439 | 100 | 0.2455 | 0.0695 |
0.4039 | 1.6835 | 200 | 0.2571 | 0.0695 |
0.4212 | 2.5232 | 300 | 0.2596 | 0.0746 |
0.4039 | 3.3629 | 400 | 0.2512 | 0.0685 |
0.3806 | 4.2025 | 500 | 0.2483 | 0.0693 |
Framework versions
- Transformers 4.53.0.dev0
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.0
- Downloads last month
- 68
Model tree for csikasote/mms-1b-all-bemgen-combined-m50f50-52-DAT-0.05-fusion
Unable to build the model tree, the base model loops to the model itself. Learn more.