mms-1b-all-bigc-combined-20hrs-42
This model is a fine-tuned version of facebook/mms-1b-all on the BIGC - BEM dataset. It achieves the following results on the evaluation set:
- Loss: 1.5889
- Wer: 0.7335
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 30.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
8.6506 | 0.1623 | 100 | 5.8876 | 1.6051 |
4.6398 | 0.3247 | 200 | 4.4276 | 1.0 |
3.2168 | 0.4870 | 300 | 1.9280 | 0.8152 |
0.8072 | 0.6494 | 400 | 1.5889 | 0.7337 |
0.7235 | 0.8117 | 500 | 1.4422 | 0.7262 |
0.7213 | 0.9740 | 600 | 1.4460 | 0.7128 |
0.6956 | 1.1364 | 700 | 1.4075 | 0.7043 |
0.6309 | 1.2987 | 800 | 1.4961 | 0.7094 |
0.6998 | 1.4610 | 900 | 1.2500 | 0.6960 |
0.6451 | 1.6234 | 1000 | 1.2464 | 0.6934 |
0.6637 | 1.7857 | 1100 | 1.3811 | 0.6833 |
0.6959 | 1.9481 | 1200 | 1.3056 | 0.6780 |
0.6718 | 2.1104 | 1300 | 1.3619 | 0.6748 |
Framework versions
- Transformers 4.53.0.dev0
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.0
- Downloads last month
- 12
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for csikasote/mms-1b-all-bigc-combined-20hrs-42
Base model
facebook/mms-1b-all