mms-1b-all-bigc-combined-25hrs-42
This model is a fine-tuned version of facebook/mms-1b-all on the BIGC - BEM dataset. It achieves the following results on the evaluation set:
- Loss: 1.3983
- Wer: 0.6992
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 30.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
8.6947 | 0.1300 | 100 | 5.5534 | 1.0009 |
4.6967 | 0.2601 | 200 | 5.0200 | 1.0 |
1.6152 | 0.3901 | 300 | 1.6153 | 0.7421 |
0.7703 | 0.5202 | 400 | 1.5364 | 0.7261 |
0.7331 | 0.6502 | 500 | 1.4651 | 0.7130 |
0.7371 | 0.7802 | 600 | 1.4504 | 0.7086 |
0.7381 | 0.9103 | 700 | 1.4243 | 0.7009 |
0.74 | 1.0403 | 800 | 1.3983 | 0.6992 |
0.698 | 1.1704 | 900 | 1.2536 | 0.7088 |
0.7316 | 1.3004 | 1000 | 1.2274 | 0.6876 |
0.6837 | 1.4304 | 1100 | 1.4064 | 0.6924 |
0.6751 | 1.5605 | 1200 | 1.3875 | 0.6831 |
0.6635 | 1.6905 | 1300 | 1.3665 | 0.6865 |
Framework versions
- Transformers 4.53.0.dev0
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.0
- Downloads last month
- 12
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for csikasote/mms-1b-all-bigc-combined-25hrs-42
Base model
facebook/mms-1b-all