mms-1b-all-bigc-combined-30hrs-42
This model is a fine-tuned version of facebook/mms-1b-all on the BIGC - BEM dataset. It achieves the following results on the evaluation set:
- Loss: 1.2854
- Wer: 0.7050
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 30.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
9.0011 | 0.1083 | 100 | 5.1534 | 1.0454 |
3.878 | 0.2167 | 200 | 2.0862 | 0.8182 |
0.841 | 0.3250 | 300 | 1.5117 | 0.7261 |
0.7685 | 0.4334 | 400 | 1.3449 | 0.7172 |
0.6737 | 0.5417 | 500 | 1.4747 | 0.7137 |
0.7399 | 0.6501 | 600 | 1.3218 | 0.7030 |
0.7365 | 0.7584 | 700 | 1.3402 | 0.7024 |
0.7032 | 0.8667 | 800 | 1.2854 | 0.7050 |
0.6656 | 0.9751 | 900 | 1.4080 | 0.6853 |
0.676 | 1.0834 | 1000 | 1.3882 | 0.6860 |
0.6988 | 1.1918 | 1100 | 1.1853 | 0.6814 |
0.6912 | 1.3001 | 1200 | 1.3030 | 0.6688 |
0.6836 | 1.4085 | 1300 | 1.1510 | 0.6530 |
0.6733 | 1.5168 | 1400 | 0.9635 | 0.6288 |
0.6584 | 1.6251 | 1500 | 1.1308 | 0.6650 |
0.642 | 1.7335 | 1600 | 1.0240 | 0.6481 |
0.628 | 1.8418 | 1700 | 1.0083 | 0.6410 |
Framework versions
- Transformers 4.53.0.dev0
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.0
- Downloads last month
- 13
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for csikasote/mms-1b-all-bigc-combined-30hrs-42
Base model
facebook/mms-1b-all