mms-1b-all-bigc-combined-30hrs-52
This model is a fine-tuned version of facebook/mms-1b-all on the BIGC - BEM dataset. It achieves the following results on the evaluation set:
- Loss: 1.0938
- Wer: 0.6645
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 4
- seed: 52
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 30.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
6.7325 | 0.1083 | 100 | 1.9183 | 0.9016 |
0.8428 | 0.2167 | 200 | 1.3853 | 0.7476 |
0.7825 | 0.3250 | 300 | 1.4461 | 0.7318 |
0.7408 | 0.4334 | 400 | 1.4676 | 0.7156 |
0.721 | 0.5417 | 500 | 1.3413 | 0.7042 |
0.7613 | 0.6501 | 600 | 1.3475 | 0.7026 |
0.6874 | 0.7584 | 700 | 1.3475 | 0.6943 |
0.6712 | 0.8667 | 800 | 1.2602 | 0.6920 |
0.7128 | 0.9751 | 900 | 1.2171 | 0.6878 |
0.6616 | 1.0834 | 1000 | 1.2130 | 0.6846 |
0.6838 | 1.1918 | 1100 | 1.2407 | 0.6797 |
0.6797 | 1.3001 | 1200 | 1.0939 | 0.6645 |
0.6873 | 1.4085 | 1300 | 1.0737 | 0.6705 |
0.6793 | 1.5168 | 1400 | 1.1411 | 0.6775 |
0.6821 | 1.6251 | 1500 | 1.0875 | 0.6674 |
0.6779 | 1.7335 | 1600 | 1.0898 | 0.6625 |
Framework versions
- Transformers 4.53.0.dev0
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.0
- Downloads last month
- 13
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for csikasote/mms-1b-all-bigc-combined-30hrs-52
Base model
facebook/mms-1b-all