mms-1b-all-bigc-combined-30hrs-62
This model is a fine-tuned version of facebook/mms-1b-all on the BIGC - BEM dataset. It achieves the following results on the evaluation set:
- Loss: 1.1753
- Wer: 0.6831
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 4
- seed: 62
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 30.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
7.4733 | 0.1083 | 100 | 1.7987 | 0.9545 |
0.8716 | 0.2167 | 200 | 1.5641 | 0.7324 |
0.8115 | 0.3250 | 300 | 1.4396 | 0.7225 |
0.7551 | 0.4334 | 400 | 1.5039 | 0.7138 |
0.6783 | 0.5417 | 500 | 1.4103 | 0.7245 |
0.7288 | 0.6501 | 600 | 1.4796 | 0.7066 |
0.7201 | 0.7584 | 700 | 1.2745 | 0.6942 |
0.6888 | 0.8667 | 800 | 1.2970 | 0.6961 |
0.7251 | 0.9751 | 900 | 1.2936 | 0.6847 |
0.6938 | 1.0834 | 1000 | 1.2247 | 0.6866 |
0.6897 | 1.1918 | 1100 | 1.2731 | 0.6837 |
0.7071 | 1.3001 | 1200 | 1.1753 | 0.6830 |
0.6915 | 1.4085 | 1300 | 1.4458 | 0.6777 |
0.6805 | 1.5168 | 1400 | 1.0781 | 0.6702 |
0.6711 | 1.6251 | 1500 | 1.1138 | 0.6681 |
0.6608 | 1.7335 | 1600 | 1.2006 | 0.6590 |
0.676 | 1.8418 | 1700 | 1.1039 | 0.6539 |
Framework versions
- Transformers 4.53.0.dev0
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.0
- Downloads last month
- 13
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for csikasote/mms-1b-all-bigc-combined-30hrs-62
Base model
facebook/mms-1b-all