csikasote's picture
End of training
b08c65c verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - generated_from_trainer
datasets:
  - nyagen
metrics:
  - wer
model-index:
  - name: whisper-large-v3-nyagen-combined-42
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: nyagen
          type: nyagen
        metrics:
          - name: Wer
            type: wer
            value: 0.41069316299976344

whisper-large-v3-nyagen-combined-42

This model is a fine-tuned version of openai/whisper-large-v3 on the nyagen dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3866
  • Wer: 0.4107

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4325 0.4935 200 0.5920 0.3963
0.2825 0.9870 400 0.4630 0.3549
0.2047 1.4787 600 0.4346 0.3190
0.1786 1.9722 800 0.4038 0.3424
0.0973 2.4639 1000 0.4064 0.2505
0.1057 2.9574 1200 0.3866 0.4107
0.0424 3.4491 1400 0.4073 0.2392
0.0591 3.9426 1600 0.4015 0.3277
0.0348 4.4343 1800 0.4354 0.2392
0.0273 4.9278 2000 0.4299 0.2165

Framework versions

  • Transformers 4.53.0.dev0
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.0