whisper-medium-swagen-balanced-62

This model is a fine-tuned version of openai/whisper-medium on the swagen dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5541
  • Wer: 0.3919

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 62
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.6238 0.4770 200 0.8122 0.4737
0.4914 0.9541 400 0.6395 0.4002
0.3098 1.4293 600 0.5996 0.3495
0.2721 1.9064 800 0.5564 0.3403
0.1282 2.3816 1000 0.5693 0.3892
0.1367 2.8587 1200 0.5541 0.3919
0.0388 3.3339 1400 0.5811 0.3095
0.0526 3.8110 1600 0.5600 0.3111
0.0193 4.2862 1800 0.5913 0.2999
0.0251 4.7633 2000 0.5872 0.3650

Framework versions

  • Transformers 4.53.0.dev0
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.0
Downloads last month
19
Safetensors
Model size
764M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for csikasote/whisper-medium-swagen-balanced-62

Finetuned
(700)
this model

Evaluation results