csikasote's picture
End of training
ba34ba1 verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - swagen
metrics:
  - wer
model-index:
  - name: whisper-medium-swagen-baseline-62
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: swagen
          type: swagen
        metrics:
          - name: Wer
            type: wer
            value: 0.3235867446393762

whisper-medium-swagen-baseline-62

This model is a fine-tuned version of openai/whisper-medium on the swagen dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5485
  • Wer: 0.3236

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 62
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.7072 0.4759 200 0.8145 0.4739
0.5449 0.9518 400 0.6483 0.4019
0.3228 1.4259 600 0.5974 0.3901
0.2807 1.9018 800 0.5491 0.3579
0.1053 2.3760 1000 0.5588 0.4012
0.1212 2.8519 1200 0.5485 0.3236
0.044 3.3260 1400 0.5706 0.3248
0.0578 3.8019 1600 0.5690 0.3924
0.0227 4.2760 1800 0.5783 0.3152
0.0201 4.7519 2000 0.5821 0.2834

Framework versions

  • Transformers 4.53.0.dev0
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.0