csikasote's picture
End of training
fae06b8 verified
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - swagen
metrics:
  - wer
model-index:
  - name: whisper-medium-swagen-combined-15hrs-model
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: swagen
          type: swagen
        metrics:
          - name: Wer
            type: wer
            value: 0.27171266233766234

whisper-medium-swagen-combined-15hrs-model

This model is a fine-tuned version of openai/whisper-medium on the swagen dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4103
  • Wer: 0.2717

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 30.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.6268 0.1654 200 0.8031 0.4605
2.0712 0.3308 400 0.6148 0.3829
1.7302 0.4962 600 0.5562 0.3490
1.5735 0.6616 800 0.5103 0.3106
1.5623 0.8270 1000 0.4683 0.2776
1.2713 0.9924 1200 0.4439 0.2688
0.7209 1.1571 1400 0.4601 0.2732
0.6856 1.3225 1600 0.4391 0.2595
0.7661 1.4879 1800 0.4396 0.2755
0.8113 1.6533 2000 0.4262 0.2643
0.77 1.8187 2200 0.4175 0.2679
0.6942 1.9841 2400 0.4103 0.2717
0.2814 2.1489 2600 0.4295 0.2617
0.3171 2.3142 2800 0.4301 0.2432
0.3495 2.4796 3000 0.4299 0.2526

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0