|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: openai/whisper-medium |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- swagen |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: whisper-medium-swagen-combined-25hrs-model |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: swagen |
|
type: swagen |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.25892857142857145 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# whisper-medium-swagen-combined-25hrs-model |
|
|
|
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the swagen dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3662 |
|
- Wer: 0.2589 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 8 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 30.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:------:| |
|
| 2.8233 | 0.0993 | 200 | 0.8047 | 0.4897 | |
|
| 1.9329 | 0.1986 | 400 | 0.6191 | 0.4011 | |
|
| 1.6927 | 0.2980 | 600 | 0.5421 | 0.3791 | |
|
| 1.6183 | 0.3973 | 800 | 0.4889 | 0.3210 | |
|
| 1.4431 | 0.4966 | 1000 | 0.4684 | 0.2866 | |
|
| 1.4117 | 0.5959 | 1200 | 0.4258 | 0.2650 | |
|
| 1.2699 | 0.6952 | 1400 | 0.4222 | 0.2665 | |
|
| 1.0532 | 0.7945 | 1600 | 0.4108 | 0.2513 | |
|
| 1.0589 | 0.8939 | 1800 | 0.3982 | 0.2291 | |
|
| 1.1856 | 0.9932 | 2000 | 0.3853 | 0.2355 | |
|
| 0.6692 | 1.0929 | 2200 | 0.4001 | 0.2650 | |
|
| 0.6505 | 1.1922 | 2400 | 0.3919 | 0.2389 | |
|
| 0.6613 | 1.2915 | 2600 | 0.3809 | 0.2385 | |
|
| 0.6194 | 1.3908 | 2800 | 0.3873 | 0.2343 | |
|
| 0.6358 | 1.4901 | 3000 | 0.3850 | 0.2142 | |
|
| 0.6208 | 1.5894 | 3200 | 0.3779 | 0.2388 | |
|
| 0.5932 | 1.6888 | 3400 | 0.3725 | 0.2040 | |
|
| 0.5797 | 1.7881 | 3600 | 0.3712 | 0.2092 | |
|
| 0.5707 | 1.8874 | 3800 | 0.3738 | 0.2342 | |
|
| 0.5928 | 1.9867 | 4000 | 0.3662 | 0.2589 | |
|
| 0.2626 | 2.0864 | 4200 | 0.3803 | 0.2697 | |
|
| 0.2557 | 2.1857 | 4400 | 0.3853 | 0.2102 | |
|
| 0.3342 | 2.2850 | 4600 | 0.3891 | 0.2062 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.1 |
|
- Pytorch 2.5.1+cu124 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|