Ctranslate2 conversion of InternLM3 - 8b into "AWQ 4-bit format"
- First converted to AWQ format using the cosmopedia-100k dataset for calibration.
- Converted to Ctranslate2-compatible format afterwards
Example Usage
Non-Streaming Example:
import ctranslate2
from transformers import AutoTokenizer
def generate_response(prompt: str, system_message: str, model_path: str) -> str:
generator = ctranslate2.Generator(
model_path,
device="cuda",
)
tokenizer = AutoTokenizer.from_pretrained(model_path)
formatted_prompt = f"""<s><|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{user_message}<|im_end|>
<|im_start|>assistant
"""
tokens = tokenizer.tokenize(formatted_prompt, trust_remote_code=True)
results = generator.generate_batch(
[tokens],
max_length=1024,
sampling_temperature=0.7,
include_prompt_in_result=False,
end_token="<|im_end|>",
return_end_token=False,
)
response = tokenizer.decode(results[0].sequences_ids[0], skip_special_tokens=True)
return response
if __name__ == "__main__":
model_path = "path/to/your/phi-4-ct2-model"
system_message = "You are a helpful AI assistant."
user_prompt = "Write a short poem about a cat."
response = generate_response(user_prompt, system_message, model_path)
print("\nGenerated response:")
print(response)
- Downloads last month
- 6
Model tree for ctranslate2-4you/InternLM3-8b-Instruct-ct2-AWQ
Base model
internlm/internlm3-8b-instruct