chessgpt2-small-l
This model is a fine-tuned version of gpt2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.8139
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.04
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 2.0248 | 0.1280 | 2000 | 1.4713 |
| 1.3868 | 0.2560 | 4000 | 1.2433 |
| 1.2335 | 0.3839 | 6000 | 1.1391 |
| 1.1517 | 0.5119 | 8000 | 1.0795 |
| 1.0989 | 0.6399 | 10000 | 1.0348 |
| 1.0585 | 0.7679 | 12000 | 1.0035 |
| 1.0273 | 0.8958 | 14000 | 0.9743 |
| 0.9978 | 1.0238 | 16000 | 0.9511 |
| 0.9687 | 1.1518 | 18000 | 0.9305 |
| 0.9517 | 1.2798 | 20000 | 0.9125 |
| 0.9353 | 1.4077 | 22000 | 0.8987 |
| 0.9204 | 1.5357 | 24000 | 0.8827 |
| 0.9077 | 1.6637 | 26000 | 0.8713 |
| 0.8942 | 1.7917 | 28000 | 0.8585 |
| 0.8823 | 1.9196 | 30000 | 0.8479 |
| 0.8656 | 2.0476 | 32000 | 0.8402 |
| 0.8448 | 2.1756 | 34000 | 0.8336 |
| 0.8393 | 2.3036 | 36000 | 0.8270 |
| 0.8341 | 2.4315 | 38000 | 0.8221 |
| 0.8294 | 2.5595 | 40000 | 0.8185 |
| 0.8269 | 2.6875 | 42000 | 0.8158 |
| 0.8241 | 2.8155 | 44000 | 0.8144 |
| 0.8242 | 2.9434 | 46000 | 0.8139 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1
- Downloads last month
- 1
Model tree for dakwi/chessgpt2-small-l
Base model
openai-community/gpt2