chessgpt2-small-m
This model is a fine-tuned version of gpt2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.9060
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.04
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss |
|---|---|---|---|
| 2.3011 | 0.1280 | 1000 | 1.7077 |
| 1.5883 | 0.2560 | 2000 | 1.4142 |
| 1.3992 | 0.3839 | 3000 | 1.2912 |
| 1.2978 | 0.5119 | 4000 | 1.2150 |
| 1.2322 | 0.6399 | 5000 | 1.1646 |
| 1.1846 | 0.7679 | 6000 | 1.1219 |
| 1.1477 | 0.8958 | 7000 | 1.0882 |
| 1.1142 | 1.0238 | 8000 | 1.0618 |
| 1.0801 | 1.1518 | 9000 | 1.0461 |
| 1.0616 | 1.2798 | 10000 | 1.0251 |
| 1.0409 | 1.4077 | 11000 | 1.0020 |
| 1.0253 | 1.5357 | 12000 | 0.9859 |
| 1.0098 | 1.6637 | 13000 | 0.9726 |
| 0.9947 | 1.7917 | 14000 | 0.9585 |
| 0.9817 | 1.9196 | 15000 | 0.9472 |
| 0.9591 | 2.0476 | 16000 | 0.9364 |
| 0.9338 | 2.1756 | 17000 | 0.9291 |
| 0.9273 | 2.3036 | 18000 | 0.9212 |
| 0.9219 | 2.4315 | 19000 | 0.9153 |
| 0.9167 | 2.5595 | 20000 | 0.9107 |
| 0.9123 | 2.6875 | 21000 | 0.9081 |
| 0.9103 | 2.8155 | 22000 | 0.9065 |
| 0.9092 | 2.9434 | 23000 | 0.9060 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1
- Downloads last month
- -
Model tree for dakwi/chessgpt2-small-m
Base model
openai-community/gpt2