DanhTran2Mind's NLP
Collection
4 items
โข
Updated
The model is trained on a high-quality dataset for English-Vietnamese translation:
import tensorflow as tf
from translator import Translator
from utils import tokenizer_utils
from utils.preprocessing import input_processing, output_processing
from models.transformer import Transformer
from models.encoder import Encoder
from models.decoder import Decoder
from models.layers import EncoderLayer, DecoderLayer, MultiHeadAttention, point_wise_feed_forward_network
from models.utils import masked_loss, masked_accuracy
def main(sentence, model):
# Load tokenizers
en_tokenizer, vi_tokenizer = tokenizer_utils.load_tokenizers() # Update to include tokenizers.tokenizer_utils
# Create translator
translator = Translator(en_tokenizer, vi_tokenizer, loaded_model)
# Process and translate the input sentence
processed_sentence = input_processing(sentence)
translated_text = translator(processed_sentence)
translated_text = output_processing(translated_text)
print("Input:", processed_sentence)
print("Translated:", translated_text)
if __name__ == "__main__":
# Example sentence
sentence = """
For at least six centuries, residents along a lake in the mountains of central Japan
have marked the depth of winter by celebrating the return of a natural phenomenon
once revered as the trail of a wandering god.
"""
# Define custom objects for model loading
custom_objects = {
'Transformer': Transformer,
'Encoder': Encoder,
'Decoder': Decoder,
'EncoderLayer': EncoderLayer,
'DecoderLayer': DecoderLayer,
'MultiHeadAttention': MultiHeadAttention,
'point_wise_feed_forward_network': point_wise_feed_forward_network,
'masked_loss': masked_loss,
'masked_accuracy': masked_accuracy
}
# Load the model
loaded_model = tf.keras.models.load_model('saved_models/en_vi_translation.keras',
custom_objects=custom_objects)
main(sentence=sentence, model=loaded_model)