| 
							 | 
						--- | 
					
					
						
						| 
							 | 
						library_name: stable-baselines3 | 
					
					
						
						| 
							 | 
						tags: | 
					
					
						
						| 
							 | 
						- SpaceInvadersNoFrameskip-v4 | 
					
					
						
						| 
							 | 
						- deep-reinforcement-learning | 
					
					
						
						| 
							 | 
						- reinforcement-learning | 
					
					
						
						| 
							 | 
						- stable-baselines3 | 
					
					
						
						| 
							 | 
						model-index: | 
					
					
						
						| 
							 | 
						- name: DQN | 
					
					
						
						| 
							 | 
						  results: | 
					
					
						
						| 
							 | 
						  - task: | 
					
					
						
						| 
							 | 
						      type: reinforcement-learning | 
					
					
						
						| 
							 | 
						      name: reinforcement-learning | 
					
					
						
						| 
							 | 
						    dataset: | 
					
					
						
						| 
							 | 
						      name: SpaceInvadersNoFrameskip-v4 | 
					
					
						
						| 
							 | 
						      type: SpaceInvadersNoFrameskip-v4 | 
					
					
						
						| 
							 | 
						    metrics: | 
					
					
						
						| 
							 | 
						    - type: mean_reward | 
					
					
						
						| 
							 | 
						      value: 469.50 +/- 155.92 | 
					
					
						
						| 
							 | 
						      name: mean_reward | 
					
					
						
						| 
							 | 
						      verified: false | 
					
					
						
						| 
							 | 
						--- | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						# **DQN** Agent playing **SpaceInvadersNoFrameskip-v4** | 
					
					
						
						| 
							 | 
						This is a trained model of a **DQN** agent playing **SpaceInvadersNoFrameskip-v4** | 
					
					
						
						| 
							 | 
						using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3) | 
					
					
						
						| 
							 | 
						and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo). | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						The RL Zoo is a training framework for Stable Baselines3 | 
					
					
						
						| 
							 | 
						reinforcement learning agents, | 
					
					
						
						| 
							 | 
						with hyperparameter optimization and pre-trained agents included. | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## Usage (with SB3 RL Zoo) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/> | 
					
					
						
						| 
							 | 
						SB3: https://github.com/DLR-RM/stable-baselines3<br/> | 
					
					
						
						| 
							 | 
						SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						Install the RL Zoo (with SB3 and SB3-Contrib): | 
					
					
						
						| 
							 | 
						```bash | 
					
					
						
						| 
							 | 
						pip install rl_zoo3 | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						# Download model and save it into the logs/ folder | 
					
					
						
						| 
							 | 
						python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga danieliser -f logs/ | 
					
					
						
						| 
							 | 
						python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4  -f logs/ | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do: | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						python -m rl_zoo3.load_from_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -orga danieliser -f logs/ | 
					
					
						
						| 
							 | 
						python -m rl_zoo3.enjoy --algo dqn --env SpaceInvadersNoFrameskip-v4  -f logs/ | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## Training (with the RL Zoo) | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						python -m rl_zoo3.train --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ | 
					
					
						
						| 
							 | 
						# Upload the model and generate video (when possible) | 
					
					
						
						| 
							 | 
						python -m rl_zoo3.push_to_hub --algo dqn --env SpaceInvadersNoFrameskip-v4 -f logs/ -orga danieliser | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						## Hyperparameters | 
					
					
						
						| 
							 | 
						```python | 
					
					
						
						| 
							 | 
						OrderedDict([('batch_size', 64), | 
					
					
						
						| 
							 | 
						             ('buffer_size', 1000000), | 
					
					
						
						| 
							 | 
						             ('env_wrapper', | 
					
					
						
						| 
							 | 
						              ['stable_baselines3.common.atari_wrappers.AtariWrapper']), | 
					
					
						
						| 
							 | 
						             ('exploration_final_eps', 0.01), | 
					
					
						
						| 
							 | 
						             ('exploration_fraction', 0.1), | 
					
					
						
						| 
							 | 
						             ('frame_stack', 4), | 
					
					
						
						| 
							 | 
						             ('gradient_steps', 1), | 
					
					
						
						| 
							 | 
						             ('learning_rate', 0.0001), | 
					
					
						
						| 
							 | 
						             ('learning_starts', 100000), | 
					
					
						
						| 
							 | 
						             ('n_timesteps', 5000000.0), | 
					
					
						
						| 
							 | 
						             ('optimize_memory_usage', False), | 
					
					
						
						| 
							 | 
						             ('policy', 'CnnPolicy'), | 
					
					
						
						| 
							 | 
						             ('target_update_interval', 1000), | 
					
					
						
						| 
							 | 
						             ('train_freq', 4), | 
					
					
						
						| 
							 | 
						             ('normalize', False)]) | 
					
					
						
						| 
							 | 
						``` | 
					
					
						
						| 
							 | 
						
 |