Model Card for text2sql
LLM instruction finetuned for Text-to-SQL task.
Model Details
Model Description
- Developed by: dataeaze systems pvt ltd
- Funded by : dataeaze systems pvt ltd
- Shared by : dataeaze systems pvt ltd
- Model type: LlamaForCausalLM
- Language(s) (NLP): English
- License: cc-by-nc-sa-4.0 Model is made available under non-commercial use for research purposes only. For commercial usage please connect at [email protected]
- Finetuned from model : CodeLlama-7b-Instruct-hf
Uses
Direct Use
Model can be used a tool to convert queries in expressed in natural language (English) to SQL statements
Downstream Use
The model could be used as the initial stage in a data analytics / business intelligence application pipeline.
Out-of-Scope Use
Model has been fine tuned on a specific task of converting English language statements to SQL queries. Any use beyond this is not guaranteed to be accurate.
Bias, Risks, and Limitations
- Bias: Trained for English language only.
- Risk: Guardrails are reliant on the base models CodeLlama (Llama2). Finetuning could impact this behaviour.
- Limitations: Intended to be a small model optimised for inference. Does not provide SoTA results on accuracy.
How to Get Started with the Model
Use the code below to get started with the model.
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained(
"dataeaze/dataeaze-text2sql-codellama_7b_instruct-clinton_text_to_sql_v1",
torch_dtype=torch.bfloat16,
device_map='auto'
)
tokenizer = AutoTokenizer.from_pretrained("dataeaze/dataeaze-text2sql-codellama_7b_instruct-clinton_text_to_sql_v1")
# print("model device :", model.device)
tokenizer.pad_token = tokenizer.eos_token
model.eval()
prompt = """ Below are sql tables schemas paired with instruction that describes a task.
Using valid SQLite, write a response that appropriately completes the request for the provided tables.
### Instruction: How many transactions were made by a customer in a specific month?
### Database: RewardsProgramDB61
### Input:
CREATE SCHEMA RewardsProgram;
CREATE TABLE Customer (
CustomerID INT NOT NULL AUTO_INCREMENT,
FirstName VARCHAR(50) NOT NULL,
LastName VARCHAR(50) NOT NULL,
Email VARCHAR(100) UNIQUE NOT NULL,
Phone VARCHAR(20) UNIQUE,
DateOfBirth DATE,
PRIMARY KEY (CustomerID)
);
CREATE TABLE Membership (
MembershipID INT NOT NULL AUTO_INCREMENT,
MembershipType VARCHAR(50) NOT NULL,
DiscountPercentage DECIMAL(5, 2) NOT NULL,
ValidFrom DATETIME,
ValidTo DATETIME,
CustomerID INT NOT NULL,
PRIMARY KEY (MembershipID),
FOREIGN KEY (CustomerID) REFERENCES Customer(CustomerID)
);
CREATE TABLE Transaction (
TransactionID INT NOT NULL AUTO_INCREMENT,
TransactionDate TIMESTAMP,
TotalAmount DECIMAL(10, 2) NOT NULL,
CustomerID INT NOT NULL,
PRIMARY KEY (TransactionID),
FOREIGN KEY (CustomerID) REFERENCES Customer(CustomerID)
);
CREATE TABLE TransactionDetail (
TransactionDetailID INT NOT NULL AUTO_INCREMENT,
TransactionID INT NOT NULL,
ProductID INT NOT NULL,
Quantity INT NOT NULL,
UnitPrice DECIMAL(10, 2) NOT NULL,
PRIMARY KEY (TransactionDetailID),
FOREIGN KEY (TransactionID) REFERENCES Transaction(TransactionID),
FOREIGN KEY (ProductID) REFERENCES Product(ProductID)
);
CREATE TABLE Product (
ProductID INT NOT NULL AUTO_INCREMENT,
ProductName VARCHAR(100) NOT NULL,
UnitPrice DECIMAL(10, 2) NOT NULL,
AvailableQuantity INT NOT NULL,
CreatedDate DATETIME,
PRIMARY KEY (ProductID)
);
ALTER TABLE Membership ADD CONSTRAINT FK_Membership_Customer FOREIGN KEY (CustomerID) REFERENCES Customer(CustomerID);
ALTER TABLE TransactionDetail ADD CONSTRAINT FK_TransactionDetail_Transaction FOREIGN KEY (TransactionID) REFERENCES Transaction(TransactionID);
ALTER TABLE TransactionDetail ADD CONSTRAINT FK_TransactionDetail_Product FOREIGN KEY (ProductID) REFERENCES Product(ProductID);"
"""
input_ids = tokenizer(prompt, padding=True, return_tensors='pt')
outputs = model.generate(
input_ids=input_ids['input_ids'].to(model.device),
attention_mask=input_ids['attention_mask'].to(model.device),
max_new_tokens=3072,
)
generated_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(generated_query)
Evaluation
Testing Data & Metrics
Testing Data
Metrics
SQL queries are matched against the correct answer, with two types of evaluation
- Execution with Values
- Exact Set Match without Values
Results
model-index:
- name: dataeaze/dataeaze-text2sql-codellama_7b_instruct-dzsql
results:
- task:
type: text-to-sql
dataset:
name: SPIDER 1.0
type: text-to-sql
metrics:
- name: Execution with Values
type: Execution with Values
value: 64.3
- name: Exact Set Match without Values
type: Exact Set Match without Values
value: 29.6
source:
name: Spider 1.0 - Leaderboard
url: https://yale-lily.github.io/spider
Model Card Authors
- Suyash Chougule
- Chittaranjan Rathod
- Sourabh Daptardar
Model Card Contact
"dataeaze systems" [email protected]
- Downloads last month
- 22
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.