Dataset Viewer
The dataset viewer is not available for this split.
Cannot load the dataset split (in streaming mode) to extract the first rows.
Error code: StreamingRowsError Exception: TypeError Message: Couldn't cast array of type int64 to null Traceback: Traceback (most recent call last): File "/src/services/worker/src/worker/utils.py", line 99, in get_rows_or_raise return get_rows( File "/src/libs/libcommon/src/libcommon/utils.py", line 272, in decorator return func(*args, **kwargs) File "/src/services/worker/src/worker/utils.py", line 77, in get_rows rows_plus_one = list(itertools.islice(ds, rows_max_number + 1)) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 2285, in __iter__ for key, example in ex_iterable: File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1856, in __iter__ for key, pa_table in self._iter_arrow(): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 1888, in _iter_arrow pa_table = cast_table_to_features(pa_table, self.features) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2220, in cast_table_to_features arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()] File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2220, in <listcomp> arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()] File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1796, in wrapper return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1796, in <listcomp> return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2006, in cast_array_to_feature arrays = [ File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2007, in <listcomp> _c(array.field(name) if name in array_fields else null_array, subfeature) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1798, in wrapper return func(array, *args, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2006, in cast_array_to_feature arrays = [ File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2007, in <listcomp> _c(array.field(name) if name in array_fields else null_array, subfeature) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1798, in wrapper return func(array, *args, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2006, in cast_array_to_feature arrays = [ File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2007, in <listcomp> _c(array.field(name) if name in array_fields else null_array, subfeature) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1798, in wrapper return func(array, *args, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2103, in cast_array_to_feature return array_cast( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1798, in wrapper return func(array, *args, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1949, in array_cast raise TypeError(f"Couldn't cast array of type {_short_str(array.type)} to {_short_str(pa_type)}") TypeError: Couldn't cast array of type int64 to null
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/datasets-cards)
iwara_metadata 数据集
概述
iwara_metadata 是Iwara的视频元数据集合,包含了从首个视频至 2025 年 6 月期间的视频作品元数据。数据以 JSON 格式存储,按照年-月的目录结构进行组织。
目录结构
classification/
├── 2014-02/
├── 2014-03/
├── ...
└── 2025-06/
├── #045【フータオ】Dream_of_You.json
├── #045【フータオ】Dream_of_You全裸.json
├── #17-StarRail_負けたくない.json
└── ...
数据格式
每个 JSON 文件包含单个视频的完整元数据信息。数据结构如下:
主要字段
- id: 视频唯一标识符
- slug: URL 友好的标题标识
- title: 视频标题
- body: 视频描述(可能为空)
- status: 视频状态(如 "active")
- rating: 内容分级(如 "ecchi", "general" 等)
- private: 是否为私有视频
- unlisted: 是否未列出
- thumbnail: 缩略图索引
- embedUrl: 嵌入链接(可能为空)
统计信息
- liked: 当前用户是否点赞
- numLikes: 点赞数
- numViews: 观看次数
- numComments: 评论数
文件信息 (file)
- id: 文件唯一标识符
- type: 文件类型(如 "video")
- path: 存储路径
- name: 文件名
- mime: MIME 类型
- size: 文件大小(字节)
- width/height: 视频尺寸
- duration: 时长(秒)
- numThumbnails: 缩略图数量
- animatedPreview: 是否有动画预览
- createdAt: 创建时间
- updatedAt: 更新时间
自定义缩略图 (customThumbnail)
包含自定义缩略图的详细信息,结构与文件信息类似。
用户信息 (user)
- id: 用户唯一标识符
- name: 显示名称
- username: 用户名
- status: 用户状态
- role: 用户角色
- premium: 是否为付费用户
- creatorProgram: 是否参与创作者计划
- avatar: 头像信息
标签 (tags)
每个标签包含:
- id: 标签标识符
- type: 标签类型(如 "general", "source", "category")
- sensitive: 是否为敏感标签
元数据
- createdAt: 记录创建时间
- updatedAt: 记录更新时间
- _page: 页码信息
- _fetchTime: 数据获取时间
数据示例
{
"id": "xF38nxQHnWXWPH",
"slug": "genshin-impact-mizuki-bon-bon-chocolat",
"title": "(Genshin Impact) Mizuki - Bon Bon Chocolat",
"status": "active",
"rating": "ecchi",
"numLikes": 296,
"numViews": 3810,
"file": {
"type": "video",
"mime": "video/mp4",
"size": 297583518,
"duration": 231
},
"tags": [
{"id": "dance", "type": "general"},
{"id": "genshin_impact", "type": "source"},
{"id": "mikumikudance", "type": "category"}
]
}
数据统计
- 时间跨度: 2014年2月 - 2025年6月
- 目录数量: 136个月度目录
- 数据格式: JSON
- 文件命名: 使用视频标题作为文件名
使用建议
- 批量处理: 可以使用脚本遍历所有目录进行批量数据分析
- 时间序列分析: 利用目录结构进行时间维度的趋势分析
- 标签分析: 通过标签信息了解内容分类和流行趋势
- 用户行为研究: 通过点赞数、观看数等数据研究用户偏好
注意事项
- 文件名可能包含特殊字符,处理时需要注意编码问题
- 部分字段可能为 null,使用时需要进行空值检查
- 时间戳为 ISO 8601 格式,需要适当解析
许可和使用限制
请确保在使用本数据集时遵守相关法律法规和平台服务条款。本数据集仅供AI研究目的使用。
最后更新: 2025年6月13日
我已经为您创建了一个完整的 README 文档。这个 README 包含了:
数据集概述 - 说明这是什么数据 目录结构 - 展示数据的组织方式 详细的数据格式说明 - 解释每个 JSON 字段的含义 数据示例 - 提供简化的 JSON 示例 使用建议 - 如何有效利用这个数据集 注意事项 - 使用时需要注意的问题
您可以将这个 README.md 文件保存在数据集的根目录下,方便其他人了解和使用这个数据集。如果需要添加或修改任何内容,请告诉我。
- Downloads last month
- 41