MedBrowseComp / README.md
shanchen's picture
Update README.md
308b929 verified
metadata
language:
  - en
pretty_name: 'MedBrowseComp: Medical Browsing and Comparison Dataset'
tags:
  - medical
  - healthcare
  - browsing
  - comparison
license: apache-2.0
task_categories:
  - question-answering
  - text-retrieval
configs:
  - config_name: default
    data_files:
      - split: MedBrowseComp_50
        path: MedBrowseComp_50.csv
      - split: MedBrowseComp_605
        path: MedBrowseComp_605.csv
      - split: MedBrowseComp_CUA
        path: MedBrowseComp_CUA.csv

MedBrowseComp Dataset

This repository contains datasets for medical information-seeking-oriented deep research and computer use tasks.

Overall

Datasets

The repository contains three harmonized datasets:

  1. MedBrowseComp_50: A collection of 50 medical entries for browsing and comparison.
  2. MedBrowseComp_605: A comprehensive collection of 605 medical entries.
  3. MedBrowseComp_CUA: A curated collection of medical data for comparison and analysis.

Usage

These datasets can be used for various medical text processing tasks, information retrieval, and comparative analysis.

Example usage with the Hugging Face datasets library:

from datasets import load_dataset

# Load the dataset
dataset = load_dataset("AIM-Harvard/MedBrowseComp")

# Access specific splits
med50_data = dataset["MedBrowseComp_50"]
med605_data = dataset["MedBrowseComp_605"]
cua_data = dataset["MedBrowseComp_CUA"]

GitHub Repository

For more information and related tools, visit: https://github.com/MedBrowseComp

Citation

If you use this dataset in your research, please cite: https://arxiv.org/abs/2505.14963

@misc{chen2025medbrowsecompbenchmarkingmedicaldeep,
      title={MedBrowseComp: Benchmarking Medical Deep Research and Computer Use}, 
      author={Shan Chen and Pedro Moreira and Yuxin Xiao and Sam Schmidgall and Jeremy Warner and Hugo Aerts and Thomas Hartvigsen and Jack Gallifant and Danielle S. Bitterman},
      year={2025},
      eprint={2505.14963},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2505.14963}, 
}