Dataset Viewer
Auto-converted to Parquet
image
imagewidth (px)
768
768
label
stringlengths
1
157
\tilde{H_{i}}=\varphi(H_{i})
{169^{492}}^{8}\cdot\frac{\frac{152}{10}}{62}
[\begin{matrix}4&4\\ 6\end{matrix}]
|y|<|\frac{a}{d}|
\lambda/r_{0}
E(X)=G^{\prime}(1^{-})
K=s^{s^{s^{...^{s^{f}}}}}
\hat{\mu}
\frac{25+\sqrt{621}}{2}
(\begin{matrix}-1\\ 0\end{matrix})
-\frac{1+mtan(mx)}{ln(2)}
(\begin{matrix}n\\ n\end{matrix})
t\propto l^{1-k/2}
\int\sqrt{x^{3}+1}dx
\delta r_{i}=\sum_{j=1}^{m}\frac{\partial r_{i}}{\partial q_{j}}\delta q_{j}
Z
\{X_{i},X_{j}\}\notin E
\frac{n!}{k!(n-k)!}
f(x)=\frac{1}{1+x^{2}}
\frac{1+\frac{n}{c}cos\iota_{s}}{\sqrt{1\cdot\frac{n^{3}}{c^{3}}}}
(\frac{1}{249}+10)^{(2\cdot103)^{305}}
{d^{\chi}}^{m}
\sqrt{-}4(3-\sqrt{-}9)
(\sqrt{10}\cdot3)\cdot\frac{375-26}{96}
V(\tilde{\beta})
D^{s}f(x)
\frac{d^{2}u}{dx^{2}}-u=0
D_{\mu}T^{\mu\nu}=0
\sqrt{-g}_{;\rho}=0
[L:K]=efg
(\begin{matrix}c_{i}\\ i\end{matrix})=0
\frac{dx}{dt}=rx(1-x)-px
\frac{df}{dz}=f
z=\pm\sqrt{R^{2}-r^{2}};
\overline{O_{L}P}
\overline{op_{1}}^{\prime}
q=[\begin{matrix}u\\ d\end{matrix}]
a^{s^{n^{\cdot^{\cdot^{\cdot}}}}}
A(x)>x^{\sqrt{2}-1-o(1)}
(\begin{matrix}\alpha\\ k\end{matrix})
(A,B)
\tilde{Q_{s}}
(\frac{-3}{\sqrt{10}},\frac{-7}{\sqrt{6}},\frac{2}{\sqrt{3}},0)
\omega\in[0,2\pi)
\sum_{k=1}^{n}\frac{a^{k}}{k}
A=[\begin{matrix}4&1\\ 6&3\end{matrix}]
-(4^{n})
C\approx Wlog_{2}\frac{\overline{P}}{N_{0}W}
w\sqrt{\theta}/\delta
O(\underline{u}:G)
\sqrt{xi}
Z_{0}=\sqrt{\frac{L_{\frac{6}{5}}}{D_{\frac{6}{5}}}}
\sqrt[5]{\pi^{3}+1}\approx2
\hat{U}\approx I-i\hat{H}\tau
\overline{O_{L}P}
\frac{1+\frac{n}{c}cos\iota_{s}}{\sqrt{1\cdot\frac{n^{3}}{c^{3}}}}
\hat{\alpha}=\hat{\beta}
\frac{dL}{dt}
{(\Omega^{c})}^{\mu}
10-160-\frac{69}{150}
\frac{mol}{L\cdot atm}
c^{\prime}(x^{\prime},t^{\prime})=c(x,t)
\{\begin{matrix}6\\ 6\end{matrix}\}
=\frac{8}{13}
\frac{d_{A}}{d_{B}}=\sqrt{\frac{P_{A}}{P_{B}}}
\frac{u\overline{u}+d\overline{d}+s\overline{s}}{\sqrt{3}}
\alpha=1+\frac{[I]}{K_{i}}
\sqrt{-1}\omega
z=tan(x)/\sqrt{2}
[\frac{n}{n+p}]=0.21
(\begin{matrix}n+k\\ k\end{matrix})
H^{k}(B)\simeq H^{k+m}(K)
\frac{10}{112}-{104^{40}}^{6}
r=\frac{2Gm}{c^{2}}
u:=\int_{a}^{b}v(t)dt
U2=U1=U
\xi_{1}>\lambda>\xi_{2}
\tau^{(\epsilon_{\psi})}
W=\int_{a}^{b}PdV
\frac{3}{\sqrt{3-\frac{p^{2}}{u^{2}}}}
\sigma=\sqrt{\sigma_{i}^{2}+\sigma_{j}^{2}}
(\begin{matrix}n\\ 0\end{matrix})
y=\frac{\pm\sqrt{3}}{2}
\hat{S_{z}}
p_{1}=\frac{1}{6}
C_{x}=b\lambda+A_{x}
R=\frac{r+1}{n}
\tilde{X}=f(Y)
\epsilon_{0123}=\sqrt{-g}
\tilde{Q}
T^{a}=\frac{\lambda^{a}}{2}
\frac{\partial\mu}{\partial y}
t^{\prime}=\int_{t_{0}}^{t}b(u)du
\overline{w}\frac{\partial}{\partial z}-\overline{z}\frac{\partial}{\partial w}
\pi\approx\frac{22}{7}
r=|z|=\sqrt{x^{2}+y^{2}}
\vartheta(n)=\frac{1}{\sqrt{1-\frac{n^{7}}{c^{7}}}}
s\notin T
k_{4}^{\prime}=\frac{k_{4}-ra_{4}}{\sqrt{1-\frac{r^{4}}{c^{4}}}}
r_{c}=(\frac{2\pi D_{\odot}^{2}}{\mu_{0}v\dot{M}})^{\frac{1}{4}}
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
4