Dataset Preview
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
[{'expected': SplitInfo(name='train', num_bytes=0, num_examples=255000000, shard_lengths=None, dataset_name=None), 'recorded': SplitInfo(name='train', num_bytes=6553213860, num_examples=255289109, shard_lengths=[19480000, 19480000, 19480000, 19480000, 19480000, 19480000, 19480000, 19480000, 19480000, 19480000, 19480000, 19480000, 19480000, 2049109], dataset_name='item-info')}]
Error code:   UnexpectedError

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

base62_string
string
title
string
Tp2BF
运动裤 长裤
Tp2Tb
盖 滑盖 箱盖
Tp2Z9
植草格 植草
Tp2bo
null
Tp2ep
休闲鞋 帆布
Tp2jN
立牌
Tp2lv
卫裤 运动裤
Tp3Xz
外套 尼克服
Tp3cO
鲜鸡蛋
Tp40i
螺丝帽 螺帽
Tp4BM
null
Tp4Vd
红茶 茶叶 金
Tp4WJ
null
Tp4i0
夹克
Tp4qN
洗发露
Tp4sh
花束 花束 小
Tp501
null
Tp56e
耳环
Tp5BD
表演服 演出
Tp5FZ
null
Tp5Gy
挂件
Tp5UZ
短裤
Tp5VR
耳机
Tp5ZA
null
Tp5w2
null
Tp68T
T恤
Tp6Md
null
Tp6TG
喷剂 护理液
Tp6Zd
上衣 背心 吊
Tp6sT
和田玉
Tp7Gy
背心
Tp7Kc
背心 汗衫
Tp7S7
零食 饼干 饼
Tp7ZD
围兜 围嘴 口
Tp7ww
家居服 长裤
Tp85Z
上衣 衬衫
Tp8LN
手机壳 手机
Tp8Me
null
Tp8Vp
null
Tp8gp
null
Tp8ik
连衣裙 中长
Tp8ls
升降台 升降
Tp8mE
连衣裙 长裙
Tp8qK
塑料袋 手提
Tp8se
防晒服 防晒
Tp8wv
null
Tp9JS
口水巾 围兜
Tp9PS
电风扇 风扇
Tp9Ys
营业执照
Tp9rz
茶壶 烧水壶
Tp9wY
翠峰茉莉
TpA2b
麦 麦克风 话
TpARX
null
TpAb6
雕刻图 灰度
TpAe2
电钢琴 钢琴
TpBNa
null
TpBY5
桩头 接头 夹
TpBja
洋酒 白兰地
TpBqH
衰减器
TpBsU
烤肉炉 电烤
TpBxO
腊菜 酸菜 雪
TpBy1
null
TpC61
内裤 男裤
TpCMX
面霜 安睡霜
TpCZM
null
TpCcc
面包
TpCiW
板鞋
TpCke
碗 餐具 布丁
TpCuh
美缝剂 真瓷
TpCuu
摆件 永生花
TpD7r
刮眉刀 刀片
TpDFE
剃须刀 胡子
TpDUF
半身裙 T恤
TpDYL
接头 水晶头
TpDZ8
碎草机 锄草
TpDpq
null
TpDyM
皮带 裤腰带
TpE14
维修
TpE4v
银戒指
TpECZ
智慧屏 黑钻
TpEOR
null
TpFHl
喷剂 伴肤爽
TpFOX
null
TpFUY
壁灯 灯具 壁
TpFZp
礼品 挂件 钥
TpFcm
课外书
TpFxC
洗发水液 迪
TpG2j
T恤 上衣
TpGE0
TpGo1
TpGpo
布鞋 套脚鞋
TpGvf
null
TpGwr
手饰 手串 手
TpGxX
外套 羽绒服
TpGzl
null
TpHNK
精油 精油 香
TpHPq
休闲裤 西裤
TpHWF
电锅 电煮锅
TpHm2
手机壳 Pr
TpI4d
牛仔靴 靴子
End of preview.

AL-GR/Item-Info: Anonymized Item Titles

Dataset Summary

This repository, AL-GR/Item-Info, is a companion dataset to the AL-GR generative recommendation ecosystem. It provides a crucial mapping from the abstract item identifiers (base62_string) to their corresponding anonymized text titles.

The dataset contains approximately 255 million item-title pairs. A key feature of this dataset is that the title column has been carefully processed for user privacy and information protection.

This dataset can be used for:

  • Understanding the semantic meaning behind the abstract item IDs.
  • Creating text-based features for recommendation models.
  • Debugging and analyzing recommendation results by looking up the item's category.

Anonymization and Data Curation

The title column does not contain the original, full-length product titles. To protect user data and remove sensitive information (such as brand names, specific sellers, or promotional text), a multi-step anonymization process was applied:

  1. Named Entity Recognition (NER): An NER model was first run on the original titles to identify key entities like product category, attributes, materials, etc.
  2. Entity Selection & Truncation: Only the most representative and generic entities were preserved. The result was then truncated to a short, descriptive string (e.g., "运动裤 长裤" for "Men's Nike Tech Fleece Jogger Sweatpants in Dark Grey Heather").

This process ensures that the title retains its core semantic meaning while being fully anonymized.

How to Use

The dataset is stored as a single large CSV file and can be easily loaded using the datasets library.

from datasets import load_dataset

# Load the dataset from the Hugging Face Hub
# NOTE: Replace [your-username] with the actual username
dataset = load_dataset("AL-GR/Item-Info")

# Inspect a sample
sample = dataset['train'][0]
print(sample)

# Expected output:
# {
#   'base62_string': 'Tp2BF',
#   'title': '运动裤 长裤'
# }

Dataset Structure

Data Fields

  • base62_string (string): The unique, 5-character identifier for the item. This ID is consistent across the entire AL-GR ecosystem.
  • title (string): The anonymized and processed item title. It typically contains key category or attribute words.

Data Splits

Split Number of Samples
train ~255,000,000

Citation

If you use this dataset in your research, please cite:

License

This dataset is licensed under the Apache-2.0 License.

Downloads last month
78