File size: 6,030 Bytes
90397c1
 
 
 
 
 
 
 
2731edb
 
 
 
 
409f037
 
 
 
 
 
 
 
 
 
 
 
90397c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
---
task_categories:
- visual-question-answering
language:
- en
tags:
- Vision
- remote-sensing
configs:
- config_name: CLRS
  data_files:
  - split: test
    path: CLRS/data-*.arrow
- config_name: UC_Merced
  data_files:
  - split: test
    path: UCMerced/data-*.arrow
- config_name: FloodNet
  data_files:
  - split: test
    path: floodnet/data-*.arrow
- config_name: NWPU-Captions
  data_files:
  - split: test
    path: NWPU/data-*.arrow
---

# Adapting Multimodal Large Language Models to Domains via Post-Training

This repos contains the **remote sensing visual instruction tasks for evaluating MLLMs** in our paper: [On Domain-Specific Post-Training for Multimodal Large Language Models](https://huggingface.co/papers/2411.19930).

The main project page is: [Adapt-MLLM-to-Domains](https://huggingface.co/AdaptLLM/Adapt-MLLM-to-Domains)

## 1. Download Data  
You can load datasets using the `datasets` library:  
```python
from datasets import load_dataset

# Choose the task name from the list of available tasks
task_name = 'CLRS'  # Options: 'CLRS', 'UC_Merced', 'FloodNet', 'NWPU-Captions'

# Load the dataset for the chosen task
data = load_dataset('AdaptLLM/remote-sensing-VQA-benchmark', task_name, split='test')

print(list(data)[0])
```

The mapping between category names and indices for 'CLRS', 'UC_Merced' is: 

```python3
# CLRS
label_to_name_map = {'0': 'agricultural', '1': 'airplane', '2': 'baseball diamond', '3': 'beach', '4': 'buildings',
          '5': 'chaparral', '6': 'dense residential', '7': 'forest', '8': 'freeway', '9': 'golf course', '10': 'harbor', '11': 'intersection', '12': 'medium residential', '13': 'mobile home park', '14': 'overpass', '15': 'parking lot', '16': 'river',
          '17': 'runway', '18': 'sparse residential', '19': 'storage tanks', '20': 'tennis court'}

# UC_Merced
label_to_name_map = {'0': 'agricultural', '1': 'airplane', '2': 'baseball diamond', '3': 'beach', '4': 'buildings',
          '5': 'chaparral', '6': 'dense residential', '7': 'forest', '8': 'freeway', '9': 'golf course', '10': 'harbor', '11': 'intersection', '12': 'medium residential', '13': 'mobile home park', '14': 'overpass', '15': 'parking lot', '16': 'river',
          '17': 'runway', '18': 'sparse residential', '19': 'storage tanks', '20': 'tennis court'}
```

## 2. Evaluate Any MLLM Compatible with vLLM on the Food Benchmarks

We provide a guide to directly evaluate MLLMs such as LLaVA-v1.6 ([open-source version](https://huggingface.co/Lin-Chen/open-llava-next-llama3-8b)), Qwen2-VL-Instruct, and Llama-3.2-Vision-Instruct.  
To evaluate other MLLMs, refer to [this guide](https://github.com/vllm-project/vllm/blob/main/examples/offline_inference_vision_language.py) for modifying the `BaseTask` class in the [vllm_inference/utils/task.py](https://github.com/bigai-ai/QA-Synthesizer/blob/main/vllm_inference/utils/task.py) file.  
Feel free reach out to us for assistance!

**The dataset loading script is embedded in the inference code, so you can directly run the following commands to evaluate MLLMs.**  

### 1) Setup

Install vLLM using `pip` or [from source](https://vllm.readthedocs.io/en/latest/getting_started/installation.html#build-from-source).  

As recommended in the official vLLM documentation, install vLLM in a **fresh new** conda environment:

```bash
conda create -n vllm python=3.10 -y
conda activate vllm
pip install vllm  # Ensure vllm>=0.6.2 for compatibility with Llama-3.2. If Llama-3.2 is not used, vllm==0.6.1 is sufficient.
```

Clone the repository and navigate to the inference directory:

```bash
git clone https://github.com/bigai-ai/QA-Synthesizer.git
cd QA-Synthesizer/vllm_inference
RESULTS_DIR=./eval_results  # Directory for saving evaluation scores
```

### 2) Evaluate

Run the following commands:

```bash
# Specify the domain: choose from ['remote-sensing', 'CLRS', 'UC_Merced', 'FloodNet', 'NWPU-Captions']
# 'remote-sensing' runs inference on all food tasks; others run on individual tasks.
DOMAIN='remote-sensing'

# Specify the model type: choose from ['llava', 'qwen2_vl', 'mllama']
# For LLaVA-v1.6, Qwen2-VL, and Llama-3.2-Vision-Instruct, respectively.
MODEL_TYPE='qwen2_vl'

# Set the model repository ID on Hugging Face. Examples:
# "Qwen/Qwen2-VL-2B-Instruct", "AdaptLLM/remote-sensing-Qwen2-VL-2B-Instruct" for MLLMs based on Qwen2-VL-Instruct.
# "meta-llama/Llama-3.2-11B-Vision-Instruct", "AdaptLLM/remote-sensing-Llama-3.2-11B-Vision-Instruct" for MLLMs based on Llama-3.2-Vision-Instruct.
# "AdaptLLM/remote-sensing-LLaVA-NeXT-Llama3-8B" for MLLMs based on LLaVA-v1.6.
MODEL=AdaptLLM/remote-sensing-Qwen2-VL-2B-Instruct

# Set the directory for saving model prediction outputs:
OUTPUT_DIR=./output/AdaMLLM-remote-sensing-Qwen-2B_${DOMAIN}

# Run inference with data parallelism; adjust CUDA devices as needed:
CUDA_VISIBLE_DEVICES='0,1,2,3,4,5,6,7' bash run_inference.sh ${MODEL} ${DOMAIN} ${MODEL_TYPE} ${OUTPUT_DIR} ${RESULTS_DIR}
```

Detailed scripts to reproduce our results are in [Evaluation.md](https://github.com/bigai-ai/QA-Synthesizer/blob/main/docs/Evaluation.md)

### 3) Results
The evaluation results are stored in `./eval_results`, and the model prediction outputs are in `./output`.


## Citation
If you find our work helpful, please cite us.

[AdaMLLM](https://huggingface.co/papers/2411.19930)
```bibtex
@article{adamllm,
  title={On Domain-Specific Post-Training for Multimodal Large Language Models},
  author={Cheng, Daixuan and Huang, Shaohan and Zhu, Ziyu and Zhang, Xintong and Zhao, Wayne Xin and Luan, Zhongzhi and Dai, Bo and Zhang, Zhenliang},
  journal={arXiv preprint arXiv:2411.19930},
  year={2024}
}
```

[Adapt LLM to Domains](https://huggingface.co/papers/2309.09530) (ICLR 2024)
```bibtex
@inproceedings{
cheng2024adapting,
title={Adapting Large Language Models via Reading Comprehension},
author={Daixuan Cheng and Shaohan Huang and Furu Wei},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=y886UXPEZ0}
}
```